Frictional figures of merit for single layered nanostructures.

Phys Rev Lett

UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.

Published: March 2012

We determine the frictional figures of merit for a pair of layered honeycomb nanostructures, such as graphane, fluorographene, MoS2 and WO2 moving over each other, by carrying out ab initio calculations of interlayer interaction under constant loading force. Using the Prandtl-Tomlinson model we derive the critical stiffness required to avoid stick-slip behavior. We show that these layered structures have low critical stiffness even under high loading forces due to their charged surfaces repelling each other. The intrinsic stiffness of these materials exceeds critical stiffness and thereby the materials avoid the stick-slip regime and attain nearly dissipationless continuous sliding. Remarkably, tungsten dioxide displays a much better performance relative to others and heralds a potential superlubricant. The absence of mechanical instabilities leading to conservative lateral forces is also confirmed directly by the simulations of sliding layers.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.126103DOI Listing

Publication Analysis

Top Keywords

critical stiffness
12
frictional figures
8
figures merit
8
avoid stick-slip
8
stiffness materials
8
merit single
4
single layered
4
layered nanostructures
4
nanostructures determine
4
determine frictional
4

Similar Publications

Nondestructive Mechanical Characterization of Bioengineered Tissues by Digital Holography.

ACS Biomater Sci Eng

January 2025

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis.

Inflammopharmacology

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.

View Article and Find Full Text PDF

Chronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .

View Article and Find Full Text PDF

Introduction: Ankylosing spondylitis (AS) is a chronic inflammatory disorder that primarily affects the spine and sacroiliac joints, leading to pain, stiffness, and progressive thoracolumbar kyphotic deformity. A key complication in advanced AS is the development of Andersson lesions (AL), degenerative vertebral lesions resulting from the disease's progression. These lesions can cause significant mechanical pain, often mistaken for the chronic discomfort associated with AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!