225401602012121420220311
1557-904229112012Jul20Journal of neurotraumaJ NeurotraumaCerebrospinal fluid levels of high-mobility group box 1 and cytochrome C predict outcome after pediatric traumatic brain injury.201320212013-2110.1089/neu.2011.2171High-mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is passively released from damaged and necrotic cells, and actively released from immune cells. In contrast, cytochrome c is released from mitochondria in apoptotic cells, and is considered a reliable biomarker of apoptosis. Thus, HMGB1 and cytochrome c may in part reflect the degree of necrosis and apoptosis present after traumatic brain injury (TBI), where both are felt to contribute to cell death and neurological morbidity. Ventricular cerebrospinal fluid (CSF) was obtained from children admitted to the intensive care unit (ICU) after TBI (n=37). CSF levels of HMGB1 and cytochrome c were determined at four time intervals (0-24 h, 25-48 h, 49-72 h, and>72 h after injury) using enzyme-linked immunosorbent assay (ELISA). Lumbar CSF from children without TBI served as controls (n=12). CSF HMGB1 levels were: control=1.78±0.29, 0-24 h=5.73±1.45, 25-48 h=5.16±1.73, 49-72 h=4.13±0.75,>72 h=3.80±0.90 ng/mL (mean±SEM). Peak HMGB1 levels were inversely and independently associated with favorable Glasgow Outcome Scale (GOS) scores at 6 mo (0.49 [0.24-0.97]; OR [5-95% CI]). CSF cytochrome c levels were: control=0.37±0.10, 0-24 h=0.69±0.15, 25-48 h=0.82±0.48, 49-72 h=1.52±1.08,>72 h=1.38±1.02 ng/mL (mean±SEM). Peak cytochrome c levels were independently associated with abusive head trauma (AHT; 24.29 [1.77-334.03]) and inversely and independently associated with favorable GOS scores (0.42 [0.18-0.99]). In conclusion, increased CSF levels of HMGB1 and cytochrome c were associated with poor outcome after TBI in infants and children. These data are also consistent with the designation of HMGB1 as a "danger signal." Distinctly increased CSF cytochrome c levels in infants and children with AHT and poor outcome suggests that apoptosis may play an important role in this unique patient population.AuAlicia KAKDepartment of Critical Care Medicine, Safar Center for Resuscitation Research and the Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA. auak@upmc.eduAnejaRajesh KRKBellMichael JMJBayirHülyaHFeldmanKeriKAdelsonP DavidPDFinkEricka LELKochanekPatrick MPMClarkRobert S BRSengR01 GM098474GMNIGMS NIH HHSUnited StatesR01 NS30318NSNINDS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., Extramural20120427
United StatesJ Neurotrauma88116260897-71510Biomarkers0HMGB1 Protein9007-43-6Cytochromes cIMBiomarkerscerebrospinal fluidBrain Injuriescerebrospinal fluidChildChild, PreschoolCytochromes ccerebrospinal fluidEnzyme-Linked Immunosorbent AssayFemaleGlasgow Outcome ScaleHMGB1 Proteincerebrospinal fluidHumansInfantMaleTreatment Outcome
201251602012516020121215602013720ppublish22540160PMC340824110.1089/neu.2011.2171Adachi N. Hirota M. Hamaguchi M. Okamoto K. Watanabe K. Endo F. Serum cytochrome c level as a prognostic indicator in patients with systemic inflammatory response syndrome. Clin. Chim. Acta. 2004;342:127–136.15026273Adamsbaum C. Grabar S. Mejean N. Rey-Salmon C. Abusive head trauma: judicial admissions highlight violent and repetitive shaking. Pediatrics. 2010;126:546–555.20696720Adelson P.D. Bratton S.L. Carney N.A. Chesnut R.M. du Coudray H.E. Goldstein B. Kochanek P.M. Miller H.C. Partington M.D. Selden N.R. Warden C.R. Wright D.W. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Pediatr. Crit. Care Med. 2003;4:S2–S75.12847337Adelson P.D. Ragheb J. Kanev P. Brockmeyer D. Beers S.R. Brown S.D. Cassidy L.D. Chang Y. Levin H. Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery. 2005;56:740–754. discussion 740–754.15792513Agrawal A. Schatz D.G. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell. 1997;89:43–53.9094713Ahlemeyer B. Klumpp S. Krieglstein J. Release of cytochrome c into the extracellular space contributes to neuronal apoptosis induced by staurosporine. Brain Res. 2002;934:107–116.11955473Andersson U. Wang H. Palmblad K. Aveberger A.C. Bloom O. Erlandsson-Harris H. Janson A. Kokkola R. Zhang M. Yang H. Tracey K.J. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 2000;192:565–570.PMC219324010952726Barczyk K. Kreuter M. Pryjma J. Booy E.P. Maddika S. Ghavami S. Berdel W.E. Roth J. Los M. Serum cytochrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy. Int. J. Cancer. 2005;116:167–173.15800951Ben-Ari Z. Schmilovotz-Weiss H. Belinki A. Pappo O. Sulkes J. Neuman M.G. Kaganovsky E. Kfir B. Tur-Kaspa R. Klein T. Circulating soluble cytochrome c in liver disease as a marker of apoptosis. J. Intern. Med. 2003;254:168–175.12859698Berger R.P. Adelson P.D. Richichi R. Kochanek P.M. Serum biomarkers after traumatic and hypoxemic brain injuries: insight into the biochemical response of the pediatric brain to inflicted brain injury. Dev. Neurosci. 2006;28:327–335.16943655Bianchi M.E. Manfredi A.A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 2007;220:35–46.17979838Bonaldi T. Talamo F. Scaffidi P. Ferrera D. Porto A. Bachi A. Rubartelli A. Agresti A. Bianchi M.E. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–5560.PMC21377114532127Brophy G.M. Pineda J.A. Papa L. Lewis S.B. Valadka A.B. Hannay H.J. Heaton S.C. Demery J.A. Liu M.C. Tepas J.J., 3rd Gabrielli A. Robicsek S. Wang K.K. Robertson C.S. Hayes R.L. alphaII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J. Neurotrauma. 2009;26:471–479.PMC284883419206997Bustin M. Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 1996;54:35–100.8768072Cohen M.J. Brohi K. Calfee C.S. Rahn P. Chesebro B.B. Christiaans S.C. Carles M. Howard M. Pittet J.F. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit. Care. 2009;13:R174.PMC281190319887013Darwish R.S. Amiridze N.S. Detectable levels of cytochrome C and activated caspase-9 in cerebrospinal fluid after human traumatic brain injury. Neurocrit. Care. 2010;12:337–341.20087688Ewing-Cobbs L. Prasad M. Kramer L. Landry S. Inflicted traumatic brain injury: relationship of developmental outcome to severity of injury. Pediatr. Neurosurg. 1999;31:251–258.10681680Exo J. Kochanek P.M. Adelson P.D. Greene S. Clark R.S. Bayir H. Wisniewski S.R. Bell M.J. Intracranial pressure-monitoring systems in children with traumatic brain injury: Combining therapeutic and diagnostic tools. Pediatr. Crit. Care Med. 2011;12:560–565.PMC367060820625341Fan J. Li Y. Levy R.M. Fan J.J. Hackam D.J. Vodovotz Y. Yang H. Tracey K.J. Billiar T.R. Wilson M.A. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J. Immunol. 2007;178:6573–6580.17475888Faul M. Xu L. Wald M.M. Coronado V.G. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006.Fink M.P. Bench-to-bedside review: High-mobility group box 1 and critical illness. Crit. Care. 2007;11:229.PMC255673117903310Gao H.M. Zhou H. Zhang F. Wilson B.C. Kam W. Hong J.S. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J. Neurosci. 2011;31:1081–1092.PMC304693221248133Gardella S. Andrei C. Ferrera D. Lotti L.V. Torrisi M.R. Bianchi M.E. Rubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3:995–1001.PMC130761712231511Goodwin G.H. Sanders C. Johns E.W. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur. J. Biochem. 1973;38:14–19.4774120Guenther E. Powers A. Srivastava R. Bonkowsky J.L. Abusive head trauma in children presenting with an apparent life-threatening event. J. Pediatr. 2010;157:821–825.20955853Jenny C. Hymel K.P. Ritzen A. Reinert S.E. Hay T.C. Analysis of missed cases of abusive head trauma. JAMA. 1999;281:621–626.10029123Keenan H.T. Runyan D.K. Marshall S.W. Nocera M.A. Merten D.F. A population-based comparison of clinical and outcome characteristics of young children with serious inflicted and noninflicted traumatic brain injury. Pediatrics. 2004;114:633–639.PMC236603115342832Kim J.B. Sig Choi J. Yu Y.M. Nam K. Piao C.S. Kim S.W. Lee M.H. Han P.L. Park J.S. Lee J.K. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J. Neurosci. 2006;26:6413–6421.PMC667403616775128Kluck R.M. Bossy-Wetzel E. Green D.R. Newmeyer D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132–1136.9027315Klune J.R. Dhupar R. Cardinal J. Billiar T.R. Tsung A. HMGB1: endogenous danger signaling. Mol. Med. 2008;14:476–484.PMC232333418431461Kochanek P.M. Berger R.P. Bayir H. Wagner A.K. Jenkins L.W. Clark R.S. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr. Opin. Crit. Care. 2008;14:135–141.18388674Liu X. Kim C.N. Yang J. Jemmerson R. Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–157.8689682Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–305.11951032Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994;12:991–1045.8011301Messmer D. Yang H. Telusma G. Knoll F. Li J. Messmer B. Tracey K.J. Chiorazzi N. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J. Immunol. 2004;173:307–313.15210788Mondello S. Robicsek S.A. Gabrielli A. Brophy G.M. Papa L. Tepas J. Robertson C. Buki A. Scharf D. Jixiang M. Akinyi L. Muller U. Wang K.K. Hayes R.L. AlphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J. Neurotrauma. 2010;27:1203–1213.PMC294290420408766Nakahara T. Tsuruta R. Kaneko T. Yamashita S. Fujita M. Kasaoka S. Hashiguchi T. Suzuki M. Maruyama I. Maekawa T. High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit. Care. 2009;11:362–368.19777384Palumbo R. Bianchi M.E. High mobility group box 1 protein, a cue for stem cell recruitment. Biochem. Pharmacol. 2004;68:1165–1170.15313414Peltz E.D. Moore E.E. Eckels P.C. Damle S.S. Tsuruta Y. Johnson J.L. Sauaia A. Silliman C.C. Banerjee A. Abraham E. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock. 2009;32:17–22.PMC409714519533845Pineda J.A. Lewis S.B. Valadka A.B. Papa L. Hannay H.J. Heaton S.C. Demery J.A. Liu M.C. Aikman J.M. Akle V. Brophy G.M. Tepas J.J. Wang K.K. Robertson C.S. Hayes R.L. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J. Neurotrauma. 2007;24:354–366.17375999Raucci A. Palumbo R. Bianchi M.E. HMGB1: a signal of necrosis. Autoimmunity. 2007;40:285–289.17516211Renz A. Berdel W.E. Kreuter M. Belka C. Schulze-Osthoff K. Los M. Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood. 2001;98:1542–1548.11520805Rock K.L. Hearn A. Chen C.J. Shi Y. Natural endogenous adjuvants. Springer Semin. Immunopathol. 2005;26:231–246.15609001Rouhiainen A. Kuja-Panula J. Wilkman E. Pakkanen J. Stenfors J. Tuominen R.K. Lepantalo M. Carpen O. Parkkinen J. Rauvala H. Regulation of monocyte migration by amphotericin (HMGB1) Blood. 2004;104:1174–1182.15130941Satchell M.A. Lai Y. Kochanek P.M. Wisniewski S.R. Fink E.L. Siedberg N.A. Berger R.P. DeKosky S.T. Adelson P.D. Clark R.S. Cytochrome c, a biomarker of apoptosis, is increased in cerebrospinal fluid from infants with inflicted brain injury from child abuse. J. Cereb. Blood Flow Metab. 2005;25:919–927.15744250Scaffidi P. Misteli T. Bianchi M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–195.12110890Shore P.M. Berger R.P. Varma S. Janesko K.L. Wisniewski S.R. Clark R.S. Adelson P.D. Thomas N.J. Lai Y.C. Bayir H. Kochanek P.M. Cerebrospinal fluid biomarkers versus Glasgow Coma Scale and Glasgow Outcome Scale in pediatric traumatic brain injury: the role of young age and inflicted injury. J. Neurotrauma. 2007;24:75–86.17263671Sutrias-Grau M. Bianchi M.E. Bernues J. High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex. J. Biol. Chem. 1999;274:1628–1634.9880542Tang D. Kang R. Cao L. Zhang G. Yu Y. Xiao W. Wang H. Xiao X. A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit. Care Med. 2008;36:291–295.18090368Yakovlev A.G. Ota K. Wang G. Movsesyan V. Bao W.L. Yoshihara K. Faden A.I. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J. Neurosci. 2001;21:7439–7446.PMC676290111567033