Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum.

PLoS One

Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.

Published: September 2012

Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18(th) gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335161PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035786PLOS

Publication Analysis

Top Keywords

nadph-d+ cells
16
motor deficits
8
nitric oxide
8
purkinje cells
8
nadph-d+ labeling
8
labeling cell
8
cell body
8
animals presented
8
three groups
8
cells observed
8

Similar Publications

The reproductive efficiency in buffalo is highly influenced by seasonal variability. Angiogenesis in the reproductive cycle is important for optimal physiological functioning of uterus. Estrogen receptor-α (ERα), vascular endothelial growth factor (VEGF) and reduced nicotinamide adenine dinucleotide phosphatase diaphorase (NADPH-d) are vital indicators for the uterine angiogenic process.

View Article and Find Full Text PDF

The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production.

View Article and Find Full Text PDF

Shades of gray in human white matter.

J Comp Neurol

December 2023

Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD).

View Article and Find Full Text PDF

Temporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model.

View Article and Find Full Text PDF

At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!