CNVRuler: a copy number variation-based case-control association analysis tool.

Bioinformatics

Integrated Research Center for Genome Polymorphism, Department of Microbiology, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea.

Published: July 2012

Summary: The method for genome-wide association study (GWAS) based on copy number variation (CNV) is not as well established as that for single nucleotide polymorphism (SNP)-GWAS. Although there are several tools for CNV association studies, most of them do not provide appropriate definitions of CNV regions (CNVRs), which are essential for CNV-association studies. Here we present a user-friendly program called CNVRuler for CNV-association studies. Outputs from the 10 most common CNV defining algorithms can be directly used as input files for determining the three different definitions of CNVRs. Once CNVRs are defined, CNVRuler supports four kinds of statistical association tests and options for population stratification. CNVRuler is based on the open-source programs R and Java from Sun Microsystems.

Availability: CNVRuler software is available with an online manual at the website, www.ircgp.com/CNVRuler/index.html.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bts239DOI Listing

Publication Analysis

Top Keywords

copy number
8
cnv-association studies
8
cnvruler
5
cnvruler copy
4
number variation-based
4
variation-based case-control
4
association
4
case-control association
4
association analysis
4
analysis tool
4

Similar Publications

Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications.

View Article and Find Full Text PDF

stana: an R package for metagenotyping analysis and interactive application based on clinical data.

NAR Genom Bioinform

March 2025

Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

Metagenotyping of metagenomic data has recently attracted increasing attention as it resolves intraspecies diversity by identifying single nucleotide variants. Furthermore, gene copy number analysis within species provides a deeper understanding of metabolic functions in microbial communities. However, a platform for examining metagenotyping results based on relevant grouping data is lacking.

View Article and Find Full Text PDF

Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA.

View Article and Find Full Text PDF

The role of gene copy number variation in antimicrobial resistance in human fungal pathogens.

NPJ Antimicrob Resist

January 2025

Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada.

Faced with the burden of increasing resistance to antifungals in many fungal pathogens and the constant emergence of new drug-resistant strains, it is essential to assess the importance of various resistance mechanisms. Fungi have relatively plastic genomes and can tolerate genomic copy number variation (CNV) caused by aneuploidy and gene amplification or deletion. In many cases, these genomic changes lead to adaptation to stressful conditions, including those caused by antifungal drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!