A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Leg intramuscular pressures and in vivo knee forces during lower body positive and negative pressure treadmill exercise. | LitMetric

Quantifying muscle and joint forces over a broad range of weight bearing loads during exercise may provide data required to improve prosthetic materials and better protect against muscle and bone loss. Collectively, leg intramuscular pressure (IMP), ground reaction force (GRF), and the instrumented tibial tray force measurements provide a comprehensive assessment of leg muscle and joint biomechanical effects of gravity during exercise. Titration of body weight (BW) by lower body negative pressure (LBNP) and lower body positive pressure (LBPP) can reproducibly modulate IMP within leg muscle compartments. In addition, previous studies document peak tibial forces during various daily activities of 2.2 to 2.5 BW. The study objective was to determine the IMPs of the leg, axial compressive force on the tibia in vivo, vertical GRF, and knee range of motion during altered BW levels using LBPP and LBNP treadmill exercise. We hypothesize that peak GRF, peak tibial forces, and peak IMPs of the leg correlate linearly with percent BW, as generated across a broad range of upright LBPP and supine LBNP exercise. When running at 2.24 m/s the leg IMPs significantly increased over the loading range of 60% to 140% BW with LBPP and LBNP (P < 0.001); as expected, leg IMPs were significantly higher when running compared with standing (P < 0.001). During upright LBPP, total axial force at the knee increased linearly as a function of BW at 0.67 m/s (R(2) = 0.90) and 1.34 m/s (R(2) = 0.98). During supine LBNP, total axial force at the knee increased linearly as a function of BW at 0.67 m/s (R(2) = 0.98) and 1.34 m/s (R(2) = 0.91). The present study is the first to measure IMPs and peak tibial forces in vivo during upright LBPP, upright LBNP, and supine LBNP exercise. These data will aid the development of rehabilitation exercise hardware and prescriptions for patients and astronauts.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01434.2011DOI Listing

Publication Analysis

Top Keywords

lower body
12
peak tibial
12
tibial forces
12
upright lbpp
12
supine lbnp
12
leg
8
leg intramuscular
8
body positive
8
negative pressure
8
treadmill exercise
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!