Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.

Nanotechnology

Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China.

Published: May 2012

The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl(5) solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/19/194006DOI Listing

Publication Analysis

Top Keywords

hybrid schottky
8
schottky diode
8
distances adjacent
8
conjugated polymer-silicon
4
polymer-silicon nanowire
4
nanowire array
4
array hybrid
4
diode solar
4
solar cell
4
cell application
4

Similar Publications

Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.

View Article and Find Full Text PDF

Highly Efficient Electrode of Dirac Semimetal PtTe for MoS-Based Field Effect Transistors.

ACS Appl Mater Interfaces

January 2025

Beijing Academy of Quantum Information Sciences, Beijing 100193, China.

Two-dimensional van der Waals (vdW) layered materials not only are an intriguing fundamental scientific research platform but also provide various applications to multifunctional quantum devices in the field-effect transistors (FET) thanks to their excellent physical properties. However, a metal-semiconductor (MS) interface with a large Schottky barrier causes serious problems for unleashing their intrinsic potentials toward the advancements in high-performance devices. Here, we show that exfoliated vdW Dirac semimetallic PtTe can be an excellent electrode for electrons in MoS FETs.

View Article and Find Full Text PDF

Schottky Defects Suppress Nonradiative Recombination in CHNHPbI through Charge Localization.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI(V) and CHNHI (V) vacancies─on nonradiative recombination in CHNHPbI using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution.

View Article and Find Full Text PDF

Effects of 10 keV Electron Irradiation on the Performance Degradation of SiC Schottky Diode Radiation Detectors.

Micromachines (Basel)

October 2024

National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China.

The silicon carbide (SiC) Schottky diode (SBD) detector in a SiC hybrid photomultiplier tube (HPMT) generates signals by receiving photocathode electrons with an energy of 10 keV. So, the performance of the SiC SBD under electron irradiation with an energy of 10 keV has an important significance for the application of the SiC-HPMT. However, studies on 10 keV radiation effects on the SiC SBDs were rarely reported.

View Article and Find Full Text PDF

Unraveling energetics and states of adsorbing oxygen species with MoS for modulated work function.

Nanoscale Horiz

November 2024

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China.

MoS and related transition metal dichalcogenides (TMDs) have recently been reported as having extensive applications in nanoelectronics and catalysis because of their unique physical and chemical properties. However, one practical challenge for MoS-based applications arises from the easiness of oxygen contamination, which is likely to degrade performance. To this end, understanding the states and related energetics of adsorbed oxygen is critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!