Purpose: The study aims to find candidate probes of fluorescence in situ hybridization (FISH) for detection of lung cancer with bronchial brushings and to evaluate whether the accuracy of diagnosing lung cancer by cytological deviant and genetic abnormalities is greater than that of cytology alone.
Methods: Centromeric enumeration probes (CEPs) for chromosomes 2, 3, 6, 7, 8, 9, 11, 12, and 17 were analyzed using FISH in 74 surgical resection tissues, 32 operative margin tissues without tumor involvement of lung cancer, and 174 bronchial brushings.
Results: The aneuploidy rates of the tested probes were 61.7, 89.1, 80.0, 92.7, 65.0, 70.4, 66.7, 71.8, 68.9 % in tumor tissues, and 29.3, 58.9, 33.3, 69.6, 67.0, 40.3, 38.0, 49.3, 35.1 % in bronchial brushings. The combination of cytology and FISH using the three-probe set for chromosomes 3+7+8 significantly improved the sensitivity of bronchial brushing examination for lung cancer detection (P = 0.00003), especially squamous cell carcinoma (SCC), which increased from 78.0 to 98.2 %. The specificity of the 3+7+8 probe set was 94.6 %. Moreover, a high aneuploidy rate of the probe set in bronchial brushings was detected more often in SCCs (P = 0.029) and late-stage non-small-cell lung cancer (NSCLC) (P = 0.044). Kaplan-Meier curves indicated that adenocarcinoma (ADC) patients with high aneuploidy rate of CEP3 in tissue samples exhibited poorer overall survival (P = 0.016).
Conclusions: FISH performed on cytology preparations is useful for confirmation of cancer diagnosis. The three-probe set, 3+7+8, has potential value for the detection of SCCs in bronchial brushings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-012-1232-0 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates.
View Article and Find Full Text PDFMicrorna
January 2025
School of Biosciences, Apeejay Stya University Gurugram, Sohna-Palwal Road, Haryana-122103, India.
MicroRNA abundance as a particular biomarker for precisely identifying cancer metastases has emerged in recent years. The expression levels of miRNA are analyzed to get insights into cancer tissue detection and subtypes. Similar to other cancer types, the miRNA shows high levels of target mRNA dysregulation in association with non-small cell lung carcinoma (NSCLC).
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.
View Article and Find Full Text PDFCell Rep
January 2025
The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China. Electronic address:
CD8 T cell exhaustion (Tex) has been widely acknowledged in human cancer, while the underlying mechanisms remain unclear. Here, we demonstrate that reduced amino acid (aa) metabolism and mTOR inactivation are accountable for Tex in human non-small cell lung cancer (NSCLC). NSCLC cells impede the T cell-intrinsic transcription of SLC7A5 and SLC38A1, disrupting aa transport and consequently leading to mTOR inactivation.
View Article and Find Full Text PDFCancer Commun (Lond)
January 2025
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!