The development of highly-sensitive and label-free operating semiconductor-based, biomaterial detecting sensors has important applications in areas such as environmental science, biomedical research and medical diagnostics. In the present study, we developed an Indium Phosphide (InP) semiconductor-based resistive biosensor using the change of its electronic properties upon biomaterial adsorption as sensing element. To detect biomaterial at low concentrations, the procedure of functionalization and covalent biomolecule immobilization was also optimized to guarantee high molecule density and high reproducibility which are prerequisite for reliable results. The characterization, such as biomolecular conjugation efficiency, detection concentration limits, receptor:ligand specificity and concentration detection range was analyzed by using three different biological systems: i) synthetic dsDNA and two phytopathogenic diseases, ii) the severe CB-form of Citrus Tristeza Virus (CTV) and iii) Xylella fastidiosa, both causing great economic loss worldwide. The experimental results show a sensitivity of 1 pM for specific ssDNA detection and about 2 nM for the specific detection of surface proteins of CTV and X. fastidiosa phytopathogens. A brief comparison with other semiconductor based biosensors and other methodological approaches is discussed and confirms the high sensitivity and reproducibility of our InP based biosensor which could be suitable for reliable early infection diagnosis in environmental and life sciences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2012.03.038 | DOI Listing |
ACS Omega
December 2024
Department of Gastroenterology, Xiamen University Affiliated Chenggong Hospital, Xiamen City, Fujian Province 361003, China.
MicroRNAs (miRNAs), which play critical roles in regulating gene expression and cell functions, are recognized as potential biomarkers for various human diseases, including gastric ulcers. The reliable, specific, and sensitive detection of miRNA is highly recommended for the clinical diagnosis and therapy of different diseases. Herein, we depict a label-free and low-background fluorescent assay for the highly sensitive detection of miRNAs by coupling target miRNA-triggered cyclization of a padlock, circular padlock-mediated catalytic hairpin assembly (CHA), and primer exchange reaction (PER)-assisted signal generation.
View Article and Find Full Text PDFAnal Chem
January 2025
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P. R. China.
Bladder, kidney, and prostate cancers are prevalent urinary cancers, and developing efficient detection methods is of significance for the early diagnosis of them. However, noninvasive and sensitive detection of urinary cancers still challenges traditional techniques. In this study, we developed a SERS-based method to analyze serum samples from patients with urinary cancers.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.
The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
School of Pharmacy, Faculty of Science, University of Waterloo, 10 Victoria St S A, Kitchener, ON N2G 1C5, Canada.
The COVID-19 outbreak has led to notable developments in point-of-care (POC) diagnostic devices, as they can be valuable resources in identifying and managing the spread of the pandemic. Currently, the majority of techniques demand advanced laboratory equipment and professionals to execute precise, efficient, accurate, and sensitive testing. In this work, we report a new method to significantly enhance the sensitivity of microwave sensing of the SARS-CoV-2 virus by functionalizing the sensor surface using anti-SARS-CoV-2 spike antibody-gold nanoparticle (AuNPs) conjugates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!