The analysis of coding sequences reveals nonrandomness in the context of both sense and stop codons. Part of this is related to nucleotide doublet preference, seen also in non-coding sequences and thought to arise from the dependence of mutational events on surrounding sequence. Another nonrandom context element, relating the wobble nucleotides of successive codons, is observed even when doublet preference, codon usage and bias in amino acid doublets are all allowed for. Several phenomena related to protein synthesis have been shown in vivo to be affected by the nucleotide sequence around codons. Thus, nonsense and missense suppression, elongation rate, precision of tRNA selection and polypeptide chain termination are all affected by codon context. At present, it remains unclear how these phenomena may influence the evolution of nonrandomness in the context of codons in natural sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01936922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!