Background And Purpose: Voltage-gated sodium channels (Na(V) channels) are key players in the generation and propagation of action potentials, and selective blockade of these channels is a promising strategy for clinically useful suppression of electrical activity. The conotoxin µ-CnIIIC from the cone snail Conus consors exhibits myorelaxing activity in rodents through specific blockade of skeletal muscle (Na(V) 1.4) Na(V) channels.

Experimental Approach: We investigated the activity of µ-CnIIIC on human Na(V) channels and characterized its inhibitory mechanism, as well as the molecular basis, for its channel specificity.

Key Results: Similar to rat paralogs, human Na(V) 1.4 and Na(V) 1.2 were potently blocked by µ-CnIIIC, the sensitivity of Na(V) 1.7 was intermediate, and Na(V) 1.5 and Na(V) 1.8 were insensitive. Half-channel chimeras revealed that determinants for the insensitivity of Na(V) 1.8 must reside in both the first and second halves of the channel, while those for Na(V) 1.5 are restricted to domains I and II. Furthermore, domain I pore loop affected the total block and therefore harbours the major determinants for the subtype specificity. Domain II pore loop only affected the kinetics of toxin binding and dissociation. Blockade by µ-CnIIIC of Na(V) 1.4 was virtually irreversible but left a residual current of about 5%, reflecting a 'leaky' block; therefore, Na(+) ions still passed through µ-CnIIIC-occupied Na(V) 1.4 to some extent. TTX was excluded from this binding site but was trapped inside the pore by µ-CnIIIC.

Conclusion And Implications: Of clinical significance, µ-CnIIIC is a potent and persistent blocker of human skeletal muscle Na(V) 1.4 that does not affect activity of cardiac Na(V) 1.5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449262PMC
http://dx.doi.org/10.1111/j.1476-5381.2012.02004.xDOI Listing

Publication Analysis

Top Keywords

nav
15
nav nav
12
molecular basis
8
subtype specificity
8
nav channels
8
skeletal muscle
8
muscle nav
8
human nav
8
domain pore
8
pore loop
8

Similar Publications

Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres.

Cells

January 2025

Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.

Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest.

View Article and Find Full Text PDF

Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.

View Article and Find Full Text PDF

Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.

View Article and Find Full Text PDF

Reevaluating Anti-Inflammatory Therapy: Targeting Senescence to Balance Anti-Cancer Efficacy and Vascular Disease.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).

Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.

View Article and Find Full Text PDF

Elucidating the roles of voltage sensors in Na1.9 activation and inactivation through a spider toxin.

Biochim Biophys Acta Gen Subj

January 2025

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China. Electronic address:

The gating process of voltage-gated sodium (Na) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of Na channel has not been clearly elucidated. Na1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!