Results of high throughput experiments can be challenging to interpret. Current approaches have relied on bulk processing the set of expression levels, in conjunction with easily obtained external evidence, such as co-occurrence. While such techniques can be used to reason probabilistically, they are not designed to shed light on what any individual gene, or a network of genes acting together, may be doing. Our belief is that today we have the information extraction ability and the computational power to perform more sophisticated analyses that consider the individual situation of each gene. The use of such techniques should lead to qualitatively superior results. The specific aim of this project is to develop computational techniques to generate a small number of biologically meaningful hypotheses based on observed results from high throughput microarray experiments, gene sequences, and next-generation sequences. Through the use of relevant known biomedical knowledge, as represented in published literature and public databases, we can generate meaningful hypotheses that will aide biologists to interpret their experimental data. We are currently developing novel approaches that exploit the rich information encapsulated in biological pathway graphs. Our methods perform a thorough and rigorous analysis of biological pathways, using complex factors such as the topology of the pathway graph and the frequency in which genes appear on different pathways, to provide more meaningful hypotheses to describe the biological phenomena captured by high throughput experiments, when compared to other existing methods that only consider partial information captured by biological pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375631 | PMC |
http://dx.doi.org/10.1186/1471-2105-13-S2-S4 | DOI Listing |
Curr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Endocrinology and Metabolism, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, China.
Aims And Objectives: This study aimed to explore the relationship between HERC6- associated immune response and Non-Alcoholic Fatty Liver Disease (NAFLD) and to screen drug candidates for novel treatments.
Materials And Methods: Mendelian Randomization (MR) was performed to test the relationship between a genetically predicted increase in HERC6 expression and the development of NAFLD. A single-cell RNA-seq profile of liver tissue with histological characteristics (GSE168933) was obtained.
J Am Soc Mass Spectrom
January 2025
Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
The tedious synthesis and limited throughput biological evaluation remain a great challenge for discovering new proteolysis targeting chimera (PROTAC). To rapidly identify potential PROTAC lead compounds, we report a platform named Auto-RapTAC. Based on the modular characteristic of the PROTAC molecule, a streamlined workflow that integrates lab automation with "click chemistry" joint building-block libraries was constructed.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China.
Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!