Regulatory T-cells (Tregs) are a subset of CD4(+) T-cells that have been found to suppress the immune response. During HIV viral infection, Treg activity has been observed to have both beneficial and deleterious effects on patient recovery; however, the extent to which this is regulated is poorly understood. We hypothesize that this dichotomy in behavior is attributed to Treg dynamics changing over the course of infection through the proliferation of an 'adaptive' Treg population which targets HIV-specific immune responses. To investigate the role Tregs play in HIV infection, a delay differatial equation model was constructed to examine (1) the possible existence of two distinct Treg populations, normal (nTregs) and adaptive (aTregs), and (2) their respective effects in limiting viral load. Sensitivity analysis was performed to test parameter regimes that show the proportionality of viral load with adaptive regulatory populations and also gave insight into the importance of downregulation of CD4(+) cells by normal Tregs on viral loads. Through the inclusion of Treg populations in the model, a diverse array of viral dynamics was found. Specifically, oscillatory and steady state behaviors were both witnessed and it was seen that the model provided a more accurate depiction of the effector cell population as compared with previous models. Through further studies of adaptive and normal Tregs, improved treatments for HIV can be constructed for patients and the viral mechanisms of infection can be further elucidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334930PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033924PLOS

Publication Analysis

Top Keywords

adaptive regulatory
8
hiv infection
8
treg populations
8
viral load
8
normal tregs
8
viral
6
infection
5
treg
5
modeling adaptive
4
regulatory t-cell
4

Similar Publications

The integration of artificial intelligence (AI) into health communication systems has introduced a transformative approach to public health management, particularly during public health emergencies, capable of reaching billions through familiar digital channels. This paper explores the utility and implications of generalist conversational artificial intelligence (CAI) advanced AI systems trained on extensive datasets to handle a wide range of conversational tasks across various domains with human-like responsiveness. The specific focus is on the application of generalist CAI within messaging services, emphasizing its potential to enhance public health communication.

View Article and Find Full Text PDF

Generation of Human Chimeric Antigen Receptor Regulatory T Cells.

J Vis Exp

January 2025

Department of Microbiology and Immunology, Medical University of South Carolina; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina;

Chimeric antigen receptor (CAR) T-cell therapy has reshaped the face of cancer treatment, leading to record remission rates in previously incurable hematological cancers. These successes have spurred interest in adapting the CAR platform to a small yet pivotal subset of CD4 T cells primarily responsible for regulating and inhibiting the immune response, regulatory T cells (Tregs). The ability to redirect Tregs' immunosuppressive activity to any extracellular target has enormous implications for creating cell therapies for autoimmune disease, organ transplant rejection, and graft-versus-host disease.

View Article and Find Full Text PDF

Objective: To analyze the dynamics of the condition of the mucous membrane in patients with metabolic syndrome at the stage of preparation for dental prosthetics using dental implants.

Material And Methods: 255 patients (151 women and 104 men) aged from 35 to 65 years were examined. 3 groups were formed: 2 study groups and a comparison group.

View Article and Find Full Text PDF

Gene regulatory network inference based on modified adaptive lasso.

J Bioinform Comput Biol

January 2025

School of Computer Science & Technology, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.

Gene regulatory networks (GRNs) reveal the regulatory interactions among genes and provide a visual tool to explain biological processes. However, how to identify direct relations among genes from gene expression data in the case of high-dimensional and small samples is a critical challenge. In this paper, we proposed a new GRN inference method based on a modified adaptive least absolute shrinkage and selection operator (MALasso).

View Article and Find Full Text PDF

Genomic and Methylomic Signatures Associated With the Maintenance of Genome Stability and Adaptive Evolution in Two Closely Allied Wolf Spiders.

Mol Ecol Resour

January 2025

Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China.

Pardosa spiders, belonging to the wolf spider family Lycosidae, play a vital role in maintaining the health of forest and agricultural ecosystems due to their function in pest control. This study presents chromosome-level genome assemblies for two allied Pardosa species, P. laura and P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!