Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases (NOS), which normally produce nitric oxide in the heart. Two NOS isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of NOS 2 in multiple cell types in the myocardium. In certain conditions, the NOS enzymes may become uncoupled, shifting from production of nitric oxide to superoxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role for NOS in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial fibrillation by modulation of NOS activity may be beneficial, although further investigation of this strategy is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3332924PMC
http://dx.doi.org/10.3389/fphys.2012.00105DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
atrial fibrillation
16
oxide synthases
8
oxidative stress
8
pathogenesis atrial
8
nitric
4
atrial
4
synthases atrial
4
fibrillation
4
fibrillation oxidative
4

Similar Publications

The assessment of exhaled nitric oxide in patients with obesity and asthma before and after exercise.

J Asthma

January 2025

Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

Objective: It is well known that children who suffer from obesity and asthma may also have exercise-induced bronchospasm. Exhaled nitric oxide is an indicator of airway inflammation, and could be affected by exercise. This study looked at how exercise, which is a typical cause of acute airway obstruction, affects the levels of FeNO and in obese and asthmatic children.

View Article and Find Full Text PDF

The pivotal roles played by nitric oxide (NO) in tissue repair, inflammation, and immune response have spurred the development of a wide range of NO-releasing biomaterials. More recently, 3D printing techniques have significantly broadened the potential applications of polymeric biomaterials in biomedicine. In this context, the development of NO-releasing biomaterials that can be fabricated through 3D printing techniques has emerged as a promising strategy for harnessing the benefits of localized NO release from implantable devices, tissue regeneration scaffolds, or bandages for topical applications.

View Article and Find Full Text PDF

Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.

View Article and Find Full Text PDF

Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.

View Article and Find Full Text PDF

The seeds of are popularly used in the management of cardiovascular conditions. This study was undertaken to evaluate the capacity of the seed ethanolic extract of (EE) to prevent the development of cardiac hypertrophy in rats. Isoproterenol (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!