The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to representation of space is not yet clear. Here, we review the ionic conductances, synaptic, and excitable properties of stellate cells, and examine their implications for models of grid firing fields. We discuss why existing data are inconsistent with models of grid fields that require stellate cells to generate periodic oscillations. An alternative possibility is that the intrinsic electrophysiological properties of stellate cells are tuned specifically to control integration of synaptic input. We highlight recent evidence that the dorsal-ventral organization of synaptic integration by stellate cells, through differences in currents mediated by HCN and leak potassium channels, influences the corresponding organization of grid fields. Because accurate cellular data will be important for distinguishing mechanisms for generation of grid fields, we introduce new data comparing properties measured with whole-cell and perforated patch-clamp recordings. We find that clustered patterns of action potential firing and the action potential after-hyperpolarization (AHP) are particularly sensitive to recording condition. Nevertheless, with both methods, these properties, resting membrane properties and resonance follow a dorsal-ventral organization. Further investigation of the molecular basis for synaptic integration by stellate cells will be important for understanding mechanisms for generation of grid fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334835 | PMC |
http://dx.doi.org/10.3389/fncir.2012.00017 | DOI Listing |
Int J Cancer
January 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China.
Pancreatic cancer is a particularly aggressive tumor, distinguished by the presence of a prominent collagenous stroma and desmoplasia that envelops the tumor cells. Pancreatic stellate cell (PSC) contributes to the formation of a dense fibrotic stroma and has been demonstrated to facilitate tumor progression. As the significance of PSCs is increasingly revealed, more explorations are focused on the complex molecular mechanisms and tumor-stromal crosstalk in order to guide potential therapeutic approaches through deactivating or reprogramming PSCs.
View Article and Find Full Text PDFCell Physiol Biochem
January 2025
UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne, Amiens, France,
Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Liver fibrosis is a prevalent liver disease associated with significant morbidity, and the activation of hepatic stellate cells (HSCs) serves as the primary causative factor driving the progression of liver fibrosis. However, capillarization of liver sinusoidal endothelial cells (LSECs) induced by hepatic fibrosis can reduce nitric oxide (NO) production and bioavailability, which consequently loses the ability to retain HSCs dormant, leading to amplified HSCs activation. Herein, an elaborate micelle (VN-M@BN) loaded with benazepril (BN) was constructed by self-assembly of polymeric NO donor, aiming for the controlled release of NO in liver fibrosis lesions thereby impeding the progression of liver fibrosis.
View Article and Find Full Text PDFRetin Cases Brief Rep
January 2025
School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
Purpose: This study examines the multimodal imaging (MMI) findings in two cases of unilateral Stellate Nonhereditary Idiopathic Foveomacular Retinoschisis (SNIFR), including detailed findings from the unaffected fellow eye.
Methods: Macular spectral domain optical coherence tomography (OCT) and 3x3 mm optical coherence tomography angiography (OCTA), microperimetry, full-field electroretinography (ff-ERG) for both the affected and the fellow eye were reviewed.
Results: The MMI findings were consistent across the two cases (71-year-old female and 60-year-old female).
Drug Res (Stuttg)
January 2025
Xi'an Eighth Hospital, Xi'an, China.
To investigate the effect of 1α,25(OH)D on hepatic stellate cells and the mechanism of the TGF-β1/Smad signaling pathway.LX2 cells were treated with TGF-β1 and different concentrations of 1α,25(OH)D. Cell proliferation was assessed using the CCK8 assay to determine the optimal concentration of 1α,25(OH)D activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!