The effects of CO(2) enrichment on growth and development of Impatiens hawkeri, an important greenhouse flower, were investigated for the purpose of providing scientific basis for CO(2) enrichment to this species in greenhouse. The plants were grown in CO(2)-controlled growth chambers with 380 (the control) and 760 (CO(2) enrichment) μmol · mol(-1), respectively. The changes in morphology, physiology, biochemistry, and leaf ultrastructure of Impatiens were examined. Results showed that CO(2) enrichment increased flower number and relative leaf area compared with the control. In addition, CO(2) enrichment significantly enhanced photosynthetic rate, contents of soluble sugars and starch, activities of peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), but reduced chlorophyll content and malondialdehyde (MDA) content. Furthermore, significant changes in chloroplast ultrastructure were observed at CO(2) enrichment: an increased number of starch grains with an expanded size, and an increased ratio of stroma thylakoid to grana thylakoid. These results suggest that CO(2) enrichment had positive effects on Impatiens, that is, it can improve the visual value, promote growth and development, and enhance antioxidant capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317631 | PMC |
http://dx.doi.org/10.1100/2012/601263 | DOI Listing |
Nature
January 2025
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA.
Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
J Environ Manage
December 2024
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Microbially mediated anaerobic oxidation of methane (AOM) regulates methane (CH) fluxes. Increases in the global atmospheric carbon dioxide (CO) concentration and iron oxide rich in paddy soils influence AOM. However, the response and mechanisms between these two processes and AOM remain unclear.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil. Electronic address:
This study aimed to assess the interactive effects of CO-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.
The separation of oxygen (O) and nitrogen (N) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of and C atoms, as suitable membranes for separating O and N from air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!