Clostridium sordellii and Clostridium perfringens are infrequent human pathogens; however, the case-fatality rates for the infections are very high, particularly in obstetric C. sordellii infections (>90%). Deaths from Clostridium sordellii and Clostridium perfringens toxic shock (CTS) are sudden, and diagnosis is often challenging. Formalin-fixed, paraffin-embedded (FFPE) tissues usually are the only specimens available for sudden fatal cases, and immunohistochemistry (IHC) for Clostridia is generally performed but it cannot identify species. A clear need exists for a rapid, species-specific diagnostic assay for FFPE tissues. We developed a duplex PCR-based microsphere assay for simultaneous detection of C. sordellii and C. perfringens and evaluated DNA extracted from 42 Clostridium isolates and FFPE tissues of 28 patients with toxic shock/endometritis (20 CTS, 8 non-CTS, as confirmed by PCR and sequencing). The microsphere assay correctly identified C. sordellii and C. perfringens in all known isolates and in all CTS patients (10 C. sordellii, 8 C. perfringens, 2 both) and showed 100% concordance with PCR and sequencing results. The microsphere assay is a rapid, specific, and cost-effective method for the diagnosis of CTS and offers the advantage of simultaneous testing for C. sordellii and C. perfringens in FFPE tissues using a limited amount of DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320015PMC
http://dx.doi.org/10.1155/2012/972845DOI Listing

Publication Analysis

Top Keywords

microsphere assay
16
ffpe tissues
16
sordellii perfringens
16
clostridium sordellii
12
sordellii clostridium
12
clostridium perfringens
12
simultaneous detection
8
sordellii
8
pcr-based microsphere
8
toxic shock
8

Similar Publications

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

This study presents the development and characterization of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidization, followed by sieving, revealed a lack of aggregation and a narrow size distribution (45-125 μm) achieved across different yttrium oxide to glass ratio samples. Energy dispersive X-ray (EDX) analysis showed a significant increase in yttrium content within the microspheres with increasing yttrium oxide to glass ratio samples, ranging from approximately 1-39 mol % for 10Y-50Y microspheres, respectively.

View Article and Find Full Text PDF

Dual-signal portable microRNA biosensor based on a photothermal/visual strategy induced by cascading amplification techniques and horseradish peroxidase.

Talanta

January 2025

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei Province, PR China. Electronic address:

MicroRNAs (miRNAs) serve as potential biomarkers for many diseases such as cancer, neurodegenerative diseases and cardiovascular conditions. The portable and accurate detection of miRNA is of great significance for the early diagnosis, treatment optimization and prognostic evaluation of diseases. Herein, a photothermal/visual dual-mode assay for let-7a is developed utilizing oxidized 3, 3', 5, 5' - tetramethylbenzidine (oxTMB) as signal reporter.

View Article and Find Full Text PDF

Heat-triggered CRISPR/Cas12a microspheres for one-pot assays.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences & School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China. Electronic address:

View Article and Find Full Text PDF

Efficient removal of direct dyes and heavy metal ion by sodium alginate-based hydrogel microspheres: Equilibrium isotherms, kinetics and regeneration performance study.

Int J Biol Macromol

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:

Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!