Spinal muscular atrophies (SMAs) are hereditary disorders characterized by degeneration of lower motor neurons. Different SMA types are clinically and genetically heterogeneous and many of them show significant phenotypic overlap. We recently described the clinical phenotype of a new disease in two Finnish families with a unique autosomal dominant late-onset lower motor neuronopathy. The studied families did not show linkage to any known locus of hereditary motor neuron disease and thus seemed to represent a new disease entity. For this study, we recruited two more family members and performed a more thorough genome-wide scan. We obtained significant linkage on chromosome 22q, maximum LOD score being 3.43 at marker D22S315. The linked area is defined by flanking markers D22S686 and D22S276, comprising 18.9 Mb. The region harbours 402 genes, none of which is previously known to be associated with SMAs. This study confirms that the disease in these two families is a genetically distinct entity and also provides evidence for a founder mutation segregating in both pedigrees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477865PMC
http://dx.doi.org/10.1038/ejhg.2012.76DOI Listing

Publication Analysis

Top Keywords

autosomal dominant
8
dominant late-onset
8
motor neuronopathy
8
lower motor
8
late-onset spinal
4
motor
4
spinal motor
4
neuronopathy linked
4
linked locus
4
locus chromosome
4

Similar Publications

Generation of the human iPSC line ESi132-A from a patient with retinitis pigmentosa caused by a mutation in the PRPF31 gene.

Stem Cell Res

December 2024

Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain.

Mutations in the PRPF31 gene are a well-known cause of autosomal dominant retinitis pigmentosa (RP), the most prevalent genetic form of blindness in adults, affecting 1 in 4,000 individuals globally. In this study, peripheral blood mononuclear cells from a patient carrying a heterozygous mutation in PRPF31 were reprogrammed to generate the human iPSC line ESi132-A. This cell line was thoroughly characterized for self-renewal and pluripotency.

View Article and Find Full Text PDF

Epigenetics in autosomal dominant polycystic kidney disease.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.

View Article and Find Full Text PDF

A rare variant in the UQCRC1 gene, p.(Gly405Val) in three Austrian Parkinson's patients.

Parkinsonism Relat Disord

December 2024

Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria. Electronic address:

Background: Variants in the UQCRC1 gene have been proposed to cause autosomal dominant Parkinson's disease with neuropathy. However, definitive confirmation of UQCRC1 as an authentic Parkinson's gene remains elusive, as follow-up studies have not yet provided conclusive evidence.

Methods: 382 Austrian Parkinson's patients, particularly selected for familial and/or early onset cases, were Exome sequenced.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary Angioedema (HAE) is a rare autosomal dominant disorder characterized by low levels or dysfunctional C1 inhibitor, leading to recurrent episodes of swelling and abdominal pain.
  • A reported case involves a 53-year-old man with a longstanding history of recurrent edema and family history, who showed low levels of plasma proteins but faced treatment challenges despite various therapies, including a trial of Lanadelumab for prophylaxis.
  • The patient's experience highlights issues in managing HAE, revealing an adverse reaction to Lanadelumab that is not commonly documented, emphasizing the need for better-informed treatment strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!