We theoretically investigate the isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field. It is found that the large initial population of the excited state can lead to the high density of the free electrons in the medium and the large distortion of the driving laser field after propagation, though it benefits large enhancement of harmonic intensity in single atom response. These effects can weaken the phase-match of the macroscopic supercontinuum. On the contrary, the small initial population of 4% can generate well phase-match intense supercontinuum. We also investigate an isolated attosecond pulse generation by using a filter centered on axis to select the harmonics in the far field. Our results reveal that the radius of the spatial filter should be chosen to be small enough to reduce the duration of the isolated attosecond pulse due to the curvature effect of spatiotemporal profiles of the generated attosecond pulses in the far field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.009713 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.
View Article and Find Full Text PDFWe report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.
View Article and Find Full Text PDFiScience
September 2024
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
Quantum coherence governs the outcome and efficiency of photochemical reactions and ultrafast molecular dynamics. Recent ultrafast gas-phase X-ray scattering and electron diffraction have enabled the observation of femtosecond nuclear dynamics driven by vibrational coherence. However, probing attosecond electron dynamics and coupled electron-nuclear dynamics remains challenging.
View Article and Find Full Text PDFWe report on attosecond-scale control of high-harmonic and fast electron emission from plasma mirrors driven by relativistic-intensity near-single-cycle light waves at a kHz repetition rate. By controlling the waveform of the intense light transient, we reproducibly form a sub-cycle temporal intensity gate at the plasma mirror surface, leading to the observation of extreme ultraviolet spectral continua, characteristic of isolated attosecond pulse (IAP) generation. We also observe the correlated emission of a waveform-dependent relativistic electron beam, paving the way toward fully lightwave-controlled dynamics of relativistic plasma mirrors.
View Article and Find Full Text PDFLight Sci Appl
August 2024
IFN-CNR, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
Isolated attosecond pulse (IAP) generation usually involves the use of short-medium gas cells operated at high pressures. In contrast, long-medium schemes at low pressures are commonly perceived as inherently unsuitable for IAP generation due to the nonlinear phenomena that challenge favourable phase-matching conditions. Here we provide clear experimental evidence on the generation of isolated extreme-ultraviolet attosecond pulses in a semi-infinite gas cell, demonstrating the use of extended-medium geometries for effective production of IAPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!