Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a comprehensive evaluation of the current status of dynamic membrane (DM) technology as an alternative to membrane bioreactor (MBR) systems. DM filtration makes use of a physical barrier (e.g. cloth or mesh) on which a cake layer is formed. It is already used in traditional filtration systems, but applications in biological wastewater treatment are still at its infancy. Dynamic filtration of sludge has lower risk of fouling and requires less energy and lower capital costs compared to MBR. A review of the state-of-art in both DM materials and configurations is presented. Factors affecting DM performance are discussed in order to determine the optimum and critical approaches for membrane operation. Future perspectives to enhance the applicability and functionality of the technology regarding the treatment and membrane performance are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2012.03.086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!