Background: For pediatric cochlear implant (CI) users, CI processor technology, map characteristics, and fitting strategies are known to have a substantial impact on speech perception scores at young ages. It is unknown whether these benefits continue over time as these children reach adolescence.
Purpose: To document changes in CI technology, map characteristics, and speech perception scores in children between elementary grades and high school, and to describe relations between map characteristics and speech perception scores over time.
Research Design: A longitudinal design with participants 8-9-yr-old at session 1 and 15-18-yr-old at session 2.
Study Sample: Participants were 82 adolescents with unilateral CIs, who are a subset of a larger longitudinal study. Mean age at implantation was 3.4 yr (range: 1.7-5.4), and mean duration of device use was 5.5 yr (range: 3.8-7.5) at session 1 and 13.3 yr (range: 10.9-15) at session 2.
Data Collection And Analysis: Speech perception tests at sessions 1 and 2 were the Lexical Neighborhood Test (LNT) presented at 70 dB SPL (LNT-70) and Bamford-Kowal-Bench sentences in quiet (BKB-Q) presented at 70 dB SPL. At session 2, the LNT was also administered at 50 dB SPL (LNT-50), and BKB sentences were administered in noise with a +10 dB SNR (BKB-N). CI processor technology type and CI map characteristics (coding strategy, number of electrodes, threshold levels, and comfort levels) were obtained at both sessions. Electrical dynamic range was computed, and descriptive statistics, correlations, and repeated-measures ANOVAs were employed.
Results: Participants achieved significantly higher LNT and BKB scores, at 70 dB SPL, at ages 15-18 than at ages 8-9 yr. Forty-two participants had 1-3 electrodes either activated or deactivated in their map between test sessions, and 40 had no change in number of active electrodes (mean change: -0.5; range: -3 to +2). After conversion from arbitrary clinical map units to charge-per-phase in nanocoulombs (nC), no significant difference was found for T levels across time. Average comfort levels (C levels) decreased by 19 nC. Seventy-three participants (89%) upgraded their CI processor technology type. At both sessions, significant correlations were found between electrical dynamic range (EDR) and all speech perception measures except LNT-50 (r range: .31 to .47; p < 0.01). Similarly, significant correlations were also found between C levels and all speech perception measures (r range: .29 to .49; p < 0.01). At session 2, a significant correlation was found between processor technology type and the LNT-50 scores (r = .38; p < 0.01).
Conclusions: Significant improvement in speech scores was observed between elementary grades and high school for children who had used a CI since preschool. On average, T levels (nC) and electrode function remained stable for these long-term pediatric users. Analyses of maps did not allow for the determination of the exact cause of C level reductions, though power limitations in new processor systems and changes in perceived loudness over time are possible. Larger EDRs and higher C levels were associated with better speech scores. Newer speech processor technology was associated with better speech scores at a softer level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403824 | PMC |
http://dx.doi.org/10.3766/jaaa.23.5.5 | DOI Listing |
Int J Lang Commun Disord
January 2025
Department of Language and Cognition, University College London, London, UK.
Background: Global aphasia is a severe communication disorder affecting all language modalities, commonly caused by stroke. Evidence as to whether the functional communication of people with global aphasia (PwGA) can improve after speech and language therapy (SLT) is limited and conflicting. This is partly because cognition, which is relevant to participation in therapy and implicated in successful functional communication, can be severely impaired in global aphasia.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Psychology, Chinese University of Hong Kong, Hong Kong SAR, China
The extraction and analysis of pitch underpin speech and music recognition, sound segregation, and other auditory tasks. Perceptually, pitch can be represented as a helix composed of two factors: height monotonically aligns with frequency, while chroma cyclically repeats at doubled frequencies. Although the early perceptual and neurophysiological mechanisms for extracting pitch from acoustic signals have been extensively investigated, the equally essential subsequent stages that bridge to high-level auditory cognition remain less well understood.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, University of Chicago Medicine, Chicago, Illinois.
Objective: This study aims to evaluate the potential association of perioperative hearing outcomes with frailty by Modified 5-Item Frailty Index (mFI-5).
Design: Retrospective cross-sectional study.
Setting: Single-institutional study conducted at a tertiary care hospital between January 2018 and January 2022.
PLoS One
January 2025
Dept. of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
Music pre-processing methods are currently becoming a recognized area of research with the goal of making music more accessible to listeners with a hearing impairment. Our previous study showed that hearing-impaired listeners preferred spectrally manipulated multi-track mixes. Nevertheless, the acoustical basis of mixing for hearing-impaired listeners remains poorly understood.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Apparel and Space Design, Kyoto Women's University, Kyoto, Kyoto 605-8501, Japan.
Ever since de Saussure [Course in General Lingustics (Columbia University Press, 1916)], theorists of language have assumed that the relation between form and meaning of words is arbitrary. However, recently, a body of empirical research has established that language is embodied and contains iconicity. Sound symbolism, an intrinsic link language users perceive between word sound and properties of referents, is a representative example of iconicity in language and has offered profound insights into theories of language pertaining to language processing, language acquisition, and evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!