The enzymatic synthesis of cellulose-like substance via a non-biosynthetic pathway has been achieved by transglycosylation in an aqueous system of the corresponding substrate, cellotriose for cellulolytic enzyme endo-acting endoglucanase I (EG I) from Hypocrea jecorina. A significant amount of water-insoluble product precipitated out from the reaction system. MALDI-TOF mass analysis showed that the resulting precipitate had a degree of polymerization (DP) of up to 16 from cellotriose. Solid-state (13)C NMR spectrum of the resulting water-insoluble product revealed that all carbon resonance lines were assigned to two kinds of anhydroglucose residues in the corresponding structure of cellulose II. X-ray diffraction (XRD) measurement as well as (13)C NMR analysis showed that the crystal structure corresponds to cellulose II with a high degree of crystallinity. We propose the multiple oligomers form highly crystalline cellulose II as a result of self-assembly via oligomer-oligomer interaction when they precipitate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2012.03.018DOI Listing

Publication Analysis

Top Keywords

enzymatic synthesis
8
transglycosylation aqueous
8
water-insoluble product
8
13c nmr
8
cellulose
4
synthesis cellulose
4
cellulose ii-like
4
ii-like substance
4
substance cellulolytic
4
cellulolytic enzyme-mediated
4

Similar Publications

The study investigated the effect of dietary inclusion of high amylose cornstarch (HA-starch) on cecal microbiota composition and volatile fatty acid (VFA) concentrations in weanling pigs fed high levels of cold-pressed canola cake (CPCC). Weaned pigs (240 mixed sex; 7.1 ± 1.

View Article and Find Full Text PDF

Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin.

Cell Mol Biol Lett

January 2025

Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.

The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.

View Article and Find Full Text PDF

Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.

View Article and Find Full Text PDF

Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.

Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.

View Article and Find Full Text PDF

ERK-USP9X-coupled regulation of thymidine kinase 1 promotes both its enzyme activity-dependent and its enzyme activity-independent functions for tumor growth.

Nat Struct Mol Biol

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Thymidine kinase 1 (TK1), a crucial enzyme in DNA synthesis, is highly expressed in various cancers. However, the mechanisms underlying its elevated expression and the implications for tumor metabolism remain unclear. Here we demonstrate that activation of growth factor receptors enhances TK1 expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!