Novel monocyclic cyanoenones examined to date display unique features regarding chemical reactivity as Michael acceptors and biological potency. Remarkably, in some biological assays, the simple structure is more potent than pentacyclic triterpenoids (e.g., CDDO and bardoxolone methyl) and tricycles (e.g., TBE-31). Among monocyclic cyanoenones, 1 is a highly reactive Michael acceptor with thiol nucleophiles. Furthermore, an important feature of 1 is that its Michael addition is reversible. For the inhibition of NO production, 1 shows the highest potency. Notably, its potency is about three times higher than CDDO, whose methyl ester (bardoxolone methyl) is presently in phase III clinical trials. For the induction of NQO1, 1 also demonstrated the highest potency. These results suggest that the reactivity of these Michael acceptors is closely related to their biological potency. Interestingly, in LPS-stimulated macrophages, 1 causes apoptosis and inhibits secretion of TNF-α and IL-1β with potencies that are higher than those of bardoxolone methyl and TBE-31.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm3003922DOI Listing

Publication Analysis

Top Keywords

reactivity michael
12
michael acceptors
12
biological potency
12
monocyclic cyanoenones
12
bardoxolone methyl
12
chemical reactivity
8
acceptors biological
8
highest potency
8
potency
6
michael
5

Similar Publications

Potency and quantitative risk assessment are essential for determining safe concentrations for the formulation of potential skin sensitizers into consumer products. Several new approach methodologies (NAMs) for skin sensitization hazard assessment have been developed, validated, and adopted in OECD test guidelines. However, work is ongoing to develop NAMs for predicting skin sensitization potency on a quantitative scale for use as a point of departure (POD) in next-generation risk assessment (NGRA).

View Article and Find Full Text PDF

Investigation of Genomic and Transcriptomic Risk Factors of Clopidogrel Response in African Americans.

Clin Pharmacol Ther

January 2025

Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Clopidogrel, an anti-platelet drug, is used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic events, with African Americans (AA) suffering disproportionately. The aim of this study was to discover novel biomarkers of clopidogrel resistance in African Americans using genome and transcriptome data.

View Article and Find Full Text PDF

Biomarkers and Social Determinants in atherosclerotic Arterial Diseases: A Scoping Review.

Ann Vasc Surg

January 2025

Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy; Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, 88100 Catanzaro, Italy. Electronic address:

Background: Arterial diseases like coronary artery disease, carotid stenosis, peripheral artery disease, and abdominal aortic aneurysm have high morbidity and mortality, making them key research areas. Their multifactorial nature complicates patient treatment and prevention. Biomarkers offer insights into the biochemical and molecular processes, while social factors also significantly impact patients' health and quality of life.

View Article and Find Full Text PDF

Exploiting photopolymerization to modulate liquid crystalline network actuation.

Soft Matter

January 2025

LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.

Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens.

View Article and Find Full Text PDF

The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!