INT6 interacts with MIF4GD/SLIP1 and is necessary for efficient histone mRNA translation.

RNA

Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France.

Published: June 2012

The INT6/EIF3E protein has been implicated in mouse and human breast carcinogenesis. This subunit of the eIF3 translation initiation factor that includes a PCI domain exhibits specific features such as presence in the nucleus and ability to interact with other important cellular protein complexes like the 26S proteasome and the COP9 signalosome. It has been previously shown that INT6 was not essential for bulk translation, and this protein is considered to regulate expression of specific mRNAs. Based on the results of a two-hybrid screen performed with INT6 as bait, we characterize in this article the MIF4GD/SLIP1 protein as an interactor of this eIF3 subunit. MIF4GD was previously shown to associate with SLBP, which binds the stem-loop located at the 3' end of the histone mRNAs, and to be necessary for efficient translation of these cell cycle-regulated mRNAs that lack a poly(A) tail. In line with the interaction of both proteins, we show using the RNA interference approach that INT6 is also essential to S-phase histone mRNA translation. This was observed by analyzing expression of endogenous histones and by testing heterologous constructs placing the luciferase reporter gene under the control of the stem-loop element of various histone genes. With such a reporter plasmid, silencing and overexpression of INT6 exerted opposite effects. In agreement with these results, INT6 and MIF4GD were observed to colocalize in cytoplasmic foci. We conclude from these data that INT6, by establishing interactions with MIF4GD and SLBP, plays an important role in translation of poly(A) minus histone mRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358639PMC
http://dx.doi.org/10.1261/rna.032631.112DOI Listing

Publication Analysis

Top Keywords

histone mrna
8
mrna translation
8
int6 essential
8
histone mrnas
8
int6
7
translation
6
histone
5
int6 interacts
4
interacts mif4gd/slip1
4
mif4gd/slip1 efficient
4

Similar Publications

Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.

View Article and Find Full Text PDF

BPZ inhibits early mouse embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China. Electronic address:

The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation.

View Article and Find Full Text PDF

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy.

Nat Commun

January 2025

Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.

UHRF1 maintains DNA methylation by recruiting DNA methyltransferases to chromatin. In mouse, these dynamics are potently antagonized by a natural UHRF1 inhibitory protein STELLA, while the comparable effects of its human ortholog are insufficiently characterized, especially in cancer cells. Herein, we demonstrate that human STELLA (hSTELLA) is inadequate, while mouse STELLA (mSTELLA) is fully proficient in inhibiting the abnormal DNA methylation and oncogenic functions of UHRF1 in human cancer cells.

View Article and Find Full Text PDF

Effect of mRNA formulated with lipid nanoparticles on the transcriptomic and epigenetic profiles of F4/80 liver-associated macrophages.

Sci Rep

January 2025

Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

Delivery of an mRNA formulated with lipid nanoparticles (LNPs) induces robust humoral and cell-mediated branches of the immune response. Depending on the LNP formula, mRNA encoding proteins can be detected in the liver upon intramuscular administration of mRNA/LNP in mice. This study investigated the impact of mRNA/LNP administration on liver-associated macrophages at the transcriptomic and epigenetic levels in a mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!