There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. The isoflavone compounds activated the ISG54 promoter, mediated nuclear translocation of IRF-3, and displayed highly potent activity against hepatitis C virus (HCV) and influenza virus. Additionally, these agonists efficiently activated IRF-3 in the presence of the HCV protease NS3-4A, which is known to blunt the host immune response. Furthermore, genomic studies showed that discrete innate immune pathways centered on IRF signaling were regulated following agonist treatment without causing global changes in host gene expression. Following treatment, the expression of only 64 cellular genes was significantly induced. This report provides the first evidence that innate immune pathways dependent on IRF-3 can be successfully targeted by small-molecule drugs for the development of novel broad-spectrum antiviral compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416323 | PMC |
http://dx.doi.org/10.1128/JVI.06867-11 | DOI Listing |
J Clin Immunol
December 2024
Department of Pediatrics, Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, King Hussein Cancer Center, 202 Queen Rania Street, Amman, 11941, Jordan.
Inborn errors of immunity (IEI) are a heterogenous group of rare monogenic disorders that affect innate or adaptive immunity, resulting in susceptibility to life-threatening infections and autoimmunity. Allogeneic hematopoietic cell transplantation (HCT) is a valuable curative option for children with IEI. We conducted a retrospective single-center study on the outcome of HCT in children with IEI.
View Article and Find Full Text PDFProteomes
November 2024
Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
As the primary innate immune cells of the brain, microglia play a key role in various homeostatic and disease-related processes. To carry out their numerous functions, microglia adopt a wide range of phenotypic states. The proteomic landscape represents a more accurate molecular representation of these phenotypes; however, microglia present unique challenges for proteomic analysis.
View Article and Find Full Text PDFNeurol Int
December 2024
Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece.
Background: The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention.
View Article and Find Full Text PDFMar Drugs
November 2024
Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China.
Crustins are a family of antimicrobial peptides (AMPs) that play a pivotal role in the innate immune system of crustaceans. The discovery of novel AMPs from natural sources is crucial for expanding our current database of these peptides. Here, we identified and characterized a novel member of the crustin family, named Crus-SWD1, derived from .
View Article and Find Full Text PDFAdv Respir Med
December 2024
JSC National Scientific Medical Center, Astana 010009, Kazakhstan.
This review explores the significance and prospects of using diverse T-cell variants in the context of combined therapy for lung cancer treatment. Recently, there has been an increase in research focused on understanding the critical role of tumor-specific T lymphocytes and the potential benefits of autologous T-cell-based treatments for individuals with lung cancer. One promising approach involves intravenous administration of ex vivo-activated autologous lymphocytes to improve the immune status of patients with cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!