Background And Objective: Percutaneous laser disc decompression is commonly used to lower high pressure in the nucleus pulposus in degenerative disc diseases. The aim of this study was to investigate the impact of diode laser disc decompression at different wavelengths (980-nm vs. 1,470-nm, i.e., different water absorption characteristics).

Materials And Methods: To model decompression, a flexible laser quartz fiber inserted into the nucleus pulposus of ex vivo bovine spines using computer-assisted surgical navigation was utilized to vaporize tissue. The same energy (500 J) was delivered using both 980-nm and 1,470-nm wavelength lasers. To determine the different impact of the wavelengths before and after the procedure we evaluated the discs with MRI (T(1), T(2), diffusion maps) and with histopathology.

Results: There were no visible changes on T(1) and T(2) maps after 1,470-nm wavelength laser irradiation; however, the 980-nm wavelength caused significant changes on T(1) (decrease) and T(2) (increase) in the vaporization zone at the site of the quartz fiber. Pathological findings showed carbonization and steam-bubble formation in addition to the T(1) and T(2) changes. No significant changes were detected in the value of apparent diffusion coefficient (ADC) measurements in intervertebral disc with the 980-nm wavelength, but significant ADC and T(1) signal increase was detected with the 1,470-nm wavelength when the whole nucleus pulposus was considered.

Conclusion: The 1,470-nm laser light had an effect in the whole nucleus pulposus and not only at the site of the quartz fiber, whereas with the 980-nm laser irradiation, significant changes were demonstrated only at the application site.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.22034DOI Listing

Publication Analysis

Top Keywords

nucleus pulposus
16
quartz fiber
12
1470-nm wavelength
12
intervertebral disc
8
laser disc
8
disc decompression
8
980-nm 1470-nm
8
laser irradiation
8
980-nm wavelength
8
site quartz
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!