In order to successfully utilize stem cells for therapeutic applications in regenerative medicine, efficient differentiation into a specific cell lineage and guidance of axons in a desired direction is crucial. Here, we used aligned multi-walled carbon nanotube (MWCNT) sheets to differentiate human mesenchymal stem cells (hMSCs) into neural cells. Human MSCs present a preferential adhesion to aligned CNT sheets with longitudinal stretch parallel to the CNT orientation direction. Cell elongation was 2-fold higher than the control and most of the cells were aligned on CNT sheets within 5° from the CNT orientation direction. Furthermore, a significant, synergistic enhancement of neural differentiation was observed in hMSCs cultured on the CNT sheets. Axon outgrowth was also controlled using nanoscale patterning of CNTs. This CNT sheet provides a new cellular scaffold platform that can regulate morphogenesis and differentiation of stem cells, which could open up a new approach for tissue and stem cell regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2ib20017a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!