Arsenic is a well-known poison and carcinogen in humans. However, it also has been used to effectively treat some human cancers and non-carcinogenic ailments. Previously, we demonstrated in keratinocytes that arsenic trioxide (ATO)-induced p21(WAF1/CIP1) (p21) expression leading to cellular cytotoxicity through the c-Src/EGFR/ERK pathway and generation of reactive oxygen species (ROS). In this study, we found that EGFR-Y845 and EGFR-Y1173 could be phosphorylated by ATO. Using confocal microscopy and flow cytometry, we found that pretreatment with apocynin, DPI, and tiron could remove ATO-induced ROS production. Furthermore, to increase NADPH oxidase activity, ATO could induce cytosolic p67(phox) expression and translocation to membrane. In addition, knockdown of p67(phox) could abolish ATO-induced ROS production. Therefore, we suggest that NADPH oxidase-produced superoxide was a major source of ATO-induced ROS production. Conversely, ATO-induced NADPH oxidase activation and superoxide generation could be inhibited by the c-Src inhibitor PP1, but not by the EGFR inhibitor PD153035. In addition, overexpression of c-Src as well as treatment with ATO could stimulate EGFR-Y845/ERK phosphorylation, p21 expression, and cellular arrest/apoptosis, which could be attenuated by pretreatment with apocynin or knockdown of p67(phox). Collectively, we suggest that NADPH oxidase was involved in the ATO-induced arrest/apoptosis of keratinocytes, which was regulated by c-Src activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-012-0856-9 | DOI Listing |
Cancer Gene Ther
October 2024
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
Arsenic trioxide (ATO) has exhibited remarkable efficacy in treating acute promyelocytic leukemia (APL), primarily through promoting the degradation of the PML-RARα fusion protein. However, ATO alone fails to confer any survival benefit to non-APL acute myeloid leukemia (AML) patients and exhibits limited efficacy when used in combination with other agents. Here, we explored the general toxicity mechanisms of ATO in APL and potential drugs that could be combined with ATO to exhibit synergistic lethal effects on other AML.
View Article and Find Full Text PDFChem Biol Interact
April 2024
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
Atorvastatin (ATO), as a cholesterol-lowering drug, was the world's best-selling drug in the early 2000s. However, ATO overdose-induced liver or muscle injury is a threat to many patients, which restricts its application. Previous studies suggest that ATO overdose is accompanied with ROS accumulation and increased lipid peroxidation, which are the leading causes of ATO-induced liver damage.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
The use of vitamin C (VC) in high doses demonstrates a potent tumor suppressive effect by mediating a glucose-dependent oxidative stress in Kirsten rat sarcoma (KRAS) mutant cancer cells. VC with arsenic trioxide (ATO) is a promising drug combination that might lead to the development of effective cancer therapeutics. Considering that a tumor suppressive effect of VC requires its high-dose administration, it is of interest to examine the toxicity of two enantiomers of VC (enantiomer d-optical isomer D-VC and natural l-optical isomer L-VC) in vitro and in vivo.
View Article and Find Full Text PDFPharmacology
January 2023
College of Pharmacy, Qiqihar Medical University, Qiqihar, China.
Introduction: Atorvastatin (ATO) is often used to reduce blood lipids and prevent atherosclerosis, but excessive use of ATO will lead to hepatotoxicity. This paper investigated the effects of astragaloside IV (AS IV), which has multiple biological functions, on ATO-induced hepatotoxicity and the underlying mechanism.
Methods: ATO treatment induced a rat model of hepatotoxicity, followed by AS IV treatment.
Int J Mol Sci
June 2022
Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!