During hematopoietic lineage development, hematopoietic stem cells sequentially commit toward myeloid or lymphoid lineages in a tightly regulated manner, which under normal circumstances is irreversible. However, studies have established that targeted deletion of the B-lineage specific transcription factor, paired box gene 5 (Pax5), enables B cells to differentiate toward other hematopoietic lineages, in addition to generating progenitor B-cell lymphomas. Our previous studies showed that subversion of protein kinase C (PKC)-α in developing B cells transformed B-lineage cells. Here, we demonstrate that PKC-α modulation in committed CD19(+) B lymphocytes also promoted lineage conversion toward myeloid, NK-, and T-cell lineages upon Notch ligation. This occurred via a reduction in Pax5 expression resulting from a downregulation of E47, a product of the E2A gene. T-cell lineage commitment was indicated by the expression of T-cell associated genes Ptcra, Cd3e, and gene rearrangement at the Tcrb gene locus. Importantly, the lineage-converted T cells carried Igh gene rearrangements reminiscent of their B-cell origin. Our findings suggest that modulation of PKC-α induces hematopoietic-lineage plasticity in committed B-lineage cells by perturbing expression of critical B-lineage transcription factors, and deregulation of PKC-α activity/expression represents a potential mechanism for lineage trans-differentiation during malignancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.201141442 | DOI Listing |
Cell Rep
January 2025
Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt.
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.
View Article and Find Full Text PDFCNS Drugs
January 2025
New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!