Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes. We found no correlation between mRNA levels and the levels of HLA-A2-Tyr((369-377)) presentation. Co-localization experiments revealed that, in cell lines presenting low levels of HLA-A2-Tyr((369-377)) complexes, tyrosinase co-localizes with LAMP-1, a melanosome marker, whereas in cell lines presenting high HLA-A2-Tyr((369-377)) levels, tyrosinase localizes to the endoplasmic reticulum. We also observed differences in tyrosinase molecular weight and glycosylation composition as well as major differences in protein stability (t(1/2) ). By stabilizing the tyrosinase protein, we observed a dramatic decrease in HLA-A2-tyrosinase presentation. Our findings suggest that aberrant processing and instability of tyrosinase are responsible for the high presentation of HLA-A2-Tyr((369-377)) complexes and thus shed new light on the relationship between intracellular processing, stability of proteins, and MHC-restricted peptide presentation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201141511DOI Listing

Publication Analysis

Top Keywords

melanoma cells
12
levels hla-a2-tyr369-377
12
hla-a2-tyr369-377 complexes
12
intracellular processing
8
tyrosinase
8
mhc class
8
protein stability
8
tyrosinase protein
8
low levels
8
cell lines
8

Similar Publications

VACCIMEL is a therapeutic cancer vaccine composed of four irradiated allogeneic human melanoma cell lines rationally selected to cover a wide range of melanoma tumor-associated antigens (TAA). We previously demonstrated that vaccination in the adjuvant setting prolonged the distant-metastasis-free survival of cutaneous melanoma patients and that T cells reactive to TAA and the patient's private neoantigens increased during treatment. However, immune responses directed to vaccine antigens that may arise from VACCIMEL's somatic mutations and human polymorphisms remain unexplored.

View Article and Find Full Text PDF

Proton pump inhibitors have been explored for potentiating cancer therapies via reverting the tumor acidity and promoting the activation of anti-tumor immune responses. To regulate the intracellular pH of melanoma and immunosuppressive myeloid cells, we developed poly(L-lactide-co-glycolide) nanoparticles loaded with esomeprazole (ESO-NPs). The effect of ESO-NPs on melanoma cells was observed as alkalinization and reduction of melanin content accompanied by a decrease of microphthalmia-associated transcription factor (MITF), poliovirus receptor (PVR), and programmed death ligand 1 (PD-L1) immune checkpoint expression.

View Article and Find Full Text PDF

Melanoma is an aggressive cancer that has attracted attention in recent years due to its high mortality rate of 80%. Damage caused by oxidative stress generated by radical (type I reaction) and singlet oxygen, O (type II reaction) oxidative reactions may induce cancer. Thus, studies that aim to unveil the mechanism that drives these oxidative damage processes become relevant.

View Article and Find Full Text PDF

Introduction: Melanoma is one of the most dangerous and common types of cancer in humans. In order to minimize the toxicity and side effects of melanoma treatment, it is important to identify drug candidates that have strong anti-cancer activity and fewer side effects. Lobaric acid is a small molecule that has been found to have significant anti-cancer effects on various types of cancer cells.

View Article and Find Full Text PDF

Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!