A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability. | LitMetric

A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability.

Int J Pharm

Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.

Published: July 2012

In this study, chitosan, a cationic polymer with positive charge, was introduced to modify the nanocrystals of nitrendipine with negative charge. The nanocrystals were prepared via precipitation-high pressure homogenization method. Then the nanocrystals were dispersed into chitosan solution, and the free chitosan was removed by centrifugation to obtain the chitosan modified nanocrystals, which remained the same particle size. However, the zeta-potential changed to positive after modification. The physical stability of the chitosan modified nanocrystals was remarkably improved under ambient conditions. During the in vitro dissolution test, the modified nanocrystals showed a certain degree of slow-release property. In the in vivo study, the C(max) of nitrendipine remained the same, however, the T(max) delayed from 0.75 h to 1.5 h with the chitosan modified nanocrystals. The surface modification by chitosan improved the bioavailability compared with the initial nanocrystals, which had demonstrated significant improvement of bioavailability compared to the traditional coarse powder form. Based on the experimental results, modification of the nanocrystals with certain polymer was supposed to be a good method to control the in vitro and in vivo behaviors of the nanocrystals, which could further increase the bioavailability of the water insoluble drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2012.04.025DOI Listing

Publication Analysis

Top Keywords

modified nanocrystals
16
chitosan modified
12
nanocrystals
11
bioavailability compared
8
chitosan
7
modified
5
novel surface
4
surface modified
4
modified nitrendipine
4
nitrendipine nanocrystals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!