Amyloid-β(1-15/16) as a marker for γ-secretase inhibition in Alzheimer's disease.

J Alzheimers Dis

Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.

Published: June 2013

Amyloid-β (Aβ) producing enzymes are key targets for disease-modifying Alzheimer's disease (AD) therapies since Aβ trafficking is at the core of AD pathogenesis. Development of such drugs might benefit from the identification of markers indicating in vivo drug effects in the central nervous system. We have previously shown that Aβ(1-15) is produced by concerted β-and α-secretase cleavage of amyloid-β protein precursor (AβPP). Here, we test the hypothesis that this pathway is more engaged upon γ-secretase inhibition in humans, and cerebrospinal fluid (CSF) levels of Aβ(1-15/16) represent a biomarker for this effect. Twenty healthy men were treated with placebo (n = 5) or the γ-secretase inhibitor semagacestat (100 mg [n = 5], 140 mg [n = 5], or 280 mg [n = 5]). CSF samples were collected hourly over 36 hours and 10 time points were analyzed by immunoassay for Aβ(1-15/16), Aβ(x-38), Aβ(x-40), Aβ(x-42), sAβPPα, and sAβPPβ. The CSF concentration of Aβ(1-15/16) showed a dose-dependent response over 36 hours. In the 280 mg treatment group, a transient increase was seen with a maximum of 180% relative to baseline at 9 hours post administration of semagacestat. The concentrations of Aβ(x-38), Aβ(x-40), and Aβ(x-42) decreased the first 9 hours followed by increased concentrations after 36 hours relative to baseline. No significant changes were detected for CSF sAβPPα and sAβPPβ. Our data shows that CSF levels of Aβ(1-15/16) increase during treatment with semagacestat supporting its feasibility as a pharmacodynamic biomarker for drug candidates aimed at inhibiting γ-secretase-mediated AβPP-processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609706PMC
http://dx.doi.org/10.3233/JAD-2012-120508DOI Listing

Publication Analysis

Top Keywords

γ-secretase inhibition
8
alzheimer's disease
8
csf levels
8
levels aβ1-15/16
8
aβx-38 aβx-40
8
aβx-40 aβx-42
8
saβppα saβppβ
8
relative baseline
8
csf
5
hours
5

Similar Publications

Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.

Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.

View Article and Find Full Text PDF

Violence against women and girls (VAWG) is a leading cause of mortality and morbidity worldwide, linked to numerous health, economic, and human rights outcomes. Target 5.2 of the Sustainable Development Goals calls for elimination of all forms of VAWG; however, progress toward achieving this goal has been inadequate.

View Article and Find Full Text PDF

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

The LIM-domain-only protein LMO2 and its binding partner LDB1 are differentially required for class switch recombination.

Proc Natl Acad Sci U S A

January 2025

Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.

The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.

View Article and Find Full Text PDF

The current study examined the underlying mechanism and the effect of 1,3-thiazin-6-one on the growth of renal cancer. The findings showed that 1,3-thiazin-6-one treatment inhibited the growth of xenograft tumors in a dose-dependent manner in mice model of renal cancer. Furthermore, when 1,3-thiazin-6-one was administered in a dose-dependent manner to mice with renal cancer, the expression of the proteins p-PI3K and p-Akt significantly decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!