Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18-78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009-2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398989PMC
http://dx.doi.org/10.4161/epi.20236DOI Listing

Publication Analysis

Top Keywords

il-6 promoter
16
promoter methylation
16
methylation
14
white blood
12
blood cell
12
methylation il-6
12
dna methylation
12
physical activity
12
wbc counts
12
levels global
8

Similar Publications

SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction.

Exp Cell Res

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:

SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.

View Article and Find Full Text PDF

Follicular dendritic cell-secreted protein (FDC-SP) is produced by follicular dendritic cells, periodontal ligament and junctional epithelium (JE). JE exists immediately apical to the bottom of the pocket and binds enamel with hemidesmosomes to protect the periodontium from bacterial infection. To analyze the transcriptional regulation of the FDC-SP gene by interleukin-6 (IL-6), we performed real-time PCR, Western blotting, immunofluorescence, luciferase (LUC) assays, gel mobility shift and chromatin immunoprecipitation (ChIP) assays using Ca9-22 and Sa3 gingival epithelial cells.

View Article and Find Full Text PDF

Preliminary Study on the Positive Expression Regulation of Alpha2-Macroglobulin in the Testicular Tissue of Male Mice by Environmental Estrogens.

Int J Mol Sci

December 2024

The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.

The male reproductive impairment caused by environmental estrogens (EEs) stands as a pivotal research area in environmental toxicology. Alpha2-macroglobulin (A2M) emerges as a promising molecule capable of counteracting oxidative stress induced by EEs. This study conducted exposure experiments spanning PND1 to PND56 employing ICR mice, aiming to delve into the expression patterns of A2M and its modulated IL-6 in the testicular tissue of mice subsequent to diethylstilbestrol (DES) and benzophenone (BP) exposure, while elucidating the pivotal role of ERs in this intricate process.

View Article and Find Full Text PDF

Enrichment of H3S28p and H3K9me2 Epigenetic Marks on Inflammatory-Associated Gene Promoters in Response to Severe Burn Injury.

Life (Basel)

December 2024

Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico.

Background: Severe burns activate systemic inflammation and lead to an increase in cytokine levels. Epigenetic elements are key regulators of inflammation; however, their involvement in severe burns has not been studied. In this work, we aimed to unveil the histone H3 posttranslational modifications (PTM) profile and their enrichment in promoters of inflammatory genes in response to severe burns.

View Article and Find Full Text PDF

Runx2-NLRP3 Axis Orchestrates Matrix Stiffness-evoked Vascular Smooth Muscle Cell Inflammation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.

Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!