We compared the neurotoxic effects of 14 nm silver nanoparticles (AgNPs) and ionic silver, in the form of silver acetate (AgAc), in vivo and in vitro. In female rats, we found that AgNPs (4.5 and 9 mg AgNP/kg bw/day) and ionic silver (9 mg Ag/kg bw/day) increased the dopamine concentration in the brain following 28 days of oral administration. The concentration of 5-hydroxytryptamine (5-HT) in the brain was increased only by AgNP at a dose of 9 mg Ag/kg bw/day. Only AgAc (9 mg Ag/kg bw/day) was found to increase noradrenaline concentration in the brain. In contrast to the results obtained from a 28-day exposure, the dopamine concentration in the brain was decreased by AgNPs (2.25 and 4.5mg/kg bw/day) following a 14-day exposure. These data suggest that there are differential effects of silver on dopamine depending on the length of exposure. In vitro, AgNPs, AgAc and a 12 kDa filtered sub-nano AgNP fraction were used to investigate cell death mechanisms in neuronal-like PC12 cells. AgNPs and the 12 kDa filtered fraction decreased cell viability to a similar extent, whereas AgAc was relatively more potent. AgNPs did not induce necrosis. However, apoptosis was found to be equally increased in cells exposed to AgNPs and the 12kDa filtered fraction, with AgAc showing a greater potency. Both the mitochondrial and the death receptor pathways were found to be involved in AgNP- and AgAc-induced apoptosis. In conclusion, 14 nm AgNPs and AgAc affected brain neurotransmitter concentrations. AgNP affected 5-HT, AgAc affected noradrenaline, whereas both silver formulations affected dopamine. Furthermore, apoptosis was observed in neuronal-like cells exposed to AgNPs, a 12 kDa filtered fraction of AgNP, and AgAc. These findings suggest that ionic silver and a 14 nm AgNP preparation have similar neurotoxic effects; a possible explanation for this could be the release and action of ionic silver from the surface of AgNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2012.04.008 | DOI Listing |
RSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Silver-based fast ionic conductors show promising potential in thermoelectric applications. Among these, AgS offers unique high plasticity but low electrical conductivity, whereas AgTe exhibits high intrinsic electrical conductivity yet faces limitations due to high thermal conductivity and poor plasticity. Developing a composite thermoelectric material that combines the benefits of both is therefore essential.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.
View Article and Find Full Text PDFBone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium-silver (Ce-Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol-gel Stöber method to synthesize doped BBGs based on S49B4.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!