Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery.

J Am Chem Soc

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Published: May 2012

Well-defined Li(4)Ti(5)O(12) nanosheets terminated with rutile-TiO(2) at the edges were synthesized by a facile solution-based method and revealed directly at atomic resolution by an advanced spherical aberration imaging technique. The rutile-TiO(2) terminated Li(4)Ti(5)O(12) nanosheets show much improved rate capability and specific capacity compared with pure Li(4)Ti(5)O(12) nanosheets when used as anode materials for lithium ion batteries. The results here give clear evidence of the utility of rutile-TiO(2) as a carbon-free coating layer to improve the kinetics of Li(4)Ti(5)O(12) toward fast lithium insertion/extraction. The carbon-free nanocoating of rutile-TiO(2) is highly effective in improving the electrochemical properties of Li(4)Ti(5)O(12), promising advanced batteries with high volumetric energy density, high surface stability, and long cycle life compared with the commonly used carbon nanocoating in electrode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja301266wDOI Listing

Publication Analysis

Top Keywords

li4ti5o12 nanosheets
12
li4ti5o12
6
rutile-tio2
5
rutile-tio2 nanocoating
4
nanocoating high-rate
4
high-rate li4ti5o12
4
li4ti5o12 anode
4
anode lithium-ion
4
lithium-ion battery
4
battery well-defined
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!