Background And Purpose: Resveratrol has been regarded as a promising candidate for cancer prevention and treatment. The present study was to investigate the impact of resveratrol on the antitumor effects of temozolomide (TMZ), a standard treatment regiment of glioblastoma (GBM), in vitro and in vivo.

Methods And Results: We found that the combination of resveratrol and TMZ significantly resulted in G(2)/M cell cycle arrest by flow cytometry, triggered a robust increase in expression of astrocyte differentiation marker glial fibrillary acid protein (GFAP), downregulated the expression of matrix metalloproteinase-9 (MMP-9) by immunohistochemistry and western blot analysis as well as inhibited cell migration by scratch wound assay. Further study revealed that TMZ in combination with resveratrol remarkably increased reactive oxygen species (ROS) production, which serves as an upstream signal for AMP-activated protein kinase (AMPK) activation. Subsequently, activated AMPK inhibited mTOR signaling and downregulated antiapoptosis protein Bcl-2, which was contributed to the additive antiproliferation effects of combination treatment. In an orthotopic xenograft model of GBM, TMZ plus resveratrol treatment significantly reduced the volume of tumor, which was confirmed by decreased expression of Ki-67, a marker of proliferation index.

Conclusions: Our findings demonstrate for the first time that resveratrol can enhance TMZ-mediated antitumor effects in GBM in vitro and in vivo, via ROS-dependent AMPK-TSC-mTOR signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493617PMC
http://dx.doi.org/10.1111/j.1755-5949.2012.00319.xDOI Listing

Publication Analysis

Top Keywords

antitumor effects
12
effects temozolomide
8
ros-dependent ampk-tsc-mtor
8
ampk-tsc-mtor signaling
8
signaling pathway
8
gbm vitro
8
combination resveratrol
8
resveratrol
7
resveratrol enhances
4
enhances antitumor
4

Similar Publications

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Cell lines and patient-derived xenografts are essential to cancer research; however, the results derived from such models often lack clinical translatability, as they do not fully recapitulate the complex cancer biology. Identifying preclinical models that sufficiently resemble the biological characteristics of clinical tumors across different cancers is critically important. Here, we developed MOBER, Multi-Origin Batch Effect Remover method, to simultaneously extract biologically meaningful embeddings while removing confounder information.

View Article and Find Full Text PDF

The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Purpose: This study aims to investigate the role and mechanism of -hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells.

Methods: The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!