Anticonvulsant drugs, brain glutamate dehydrogenase activity and oxygen consumption.

ISRN Pharmacol

Neurochemistry Laboratory, Department of Biochemistry, National School of Biological Sciences, National Polytechnic Institute, Carpio Y Plan de Ayala S/No., Col. Casco de Santo Tomás, 11340 México, DF, Mexico.

Published: August 2012

Glutamate dehydrogenase (GDH, E.C. 1.4.1.3.) is a key enzyme for the biosynthesis and modulation of glutamate (GLU) metabolism and an indirect γ-aminobutyric acid (GABA) source, here we studied the effect of anticonvulsants such as pyridoxal phosphate (PPAL), aminooxyacetic acid (AAOA), and hydroxylamine (OHAMINE) on GDH activity in mouse brain. Moreover, since GLU is a glucogenic molecule and anoxia is a primary cause of convulsions, we explore the effect of these drugs on oxygen consumption. Experiments were performed in vitro as well as in vivo for both oxidative deamination of GLU and reductive amination of α-ketoglutarate (αK). Results in vitro showed that PPAL decreased oxidative deamination of GLU and oxygen consumption, whereas AAOA and OHAMINE inhibited GDH activity competitively and also inhibited oxygen consumption when αK reductive amination was carried out. In contrast, results showed that in vivo, all anticonvulsants enhanced GLU utilization by GDH and also decreased oxygen consumption. Together, results suggest that GDH activity has repercussions on oxygen consumption, which may indicate that the enzyme activity is highly regulated by energy requirements for metabolic activity. Besides, GDH may participate in regulation of GLU and, indirectly GABA levels, hence in neuronal excitability, becoming a key enzyme in seizures mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317040PMC
http://dx.doi.org/10.5402/2012/295853DOI Listing

Publication Analysis

Top Keywords

oxygen consumption
24
gdh activity
12
glutamate dehydrogenase
8
key enzyme
8
oxidative deamination
8
deamination glu
8
reductive amination
8
activity
6
oxygen
6
consumption
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!