Objectives: Antimalarial drugs are commonly prescribed for the treatment of malaria and suspected cases of malaria in India. The recent trend is to prescribe ACT and the incidence of adverse reactions to this therapy is notwell-documented in Indian population. Therefore, this study was designed to assess ADR pattern of antimalarial drugs particularly ACT in India.
Materials And Methods: Over a period of 1 year, 500 patients who were administered antimalarial drugs were enrolled in the study. The World Health Organization causality assessment scale was used for classifying the ADR.
Results: In this study out of 500 patients, 251 complained of ADRs. The sex-wise difference in reporting of ADRs was statistically not significant (P=0.0943). The most common ADRs reported were nausea, anorexia and vomiting. ADRs were most commonly reported when chloroquine was coprescribed.
Conclusions: This study indicates that ACT was commonlyused in the treatment of malaria. Results of the analysis suggest that all the ADRs were of moderate intensity and no serious ADR was observed. This baseline information will be useful to implement the ACT in India.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326924 | PMC |
http://dx.doi.org/10.4103/0253-7613.93863 | DOI Listing |
Malar J
January 2025
PATH, 2201 Westlake Ave Ste 200, Seattle, WA, 98121, USA.
Background: The World Health Organization conditionally recommends reactive drug administration to reduce malaria transmission in settings approaching elimination. However, few studies have evaluated the impact of reactive focal drug administration (rFDA) in sub-Saharan Africa, and none have evaluated it under programmatic conditions. In 2016, Senegal's national malaria control programme introduced rFDA, the presumptive treatment of compound members of a person with confirmed malaria, and reactive mass focal drug administration (rMFDA), an expanded effort including neighbouring compounds during an outbreak, in 10 low transmission districts in the north of the country.
View Article and Find Full Text PDFMalar J
January 2025
Department of Parasitology-Mycology and Tropical Medicine, Université Des Sciences de La Santé de Libreville, BP 4009, Libreville, Gabon.
Background: The negative impact of COVID-19 pandemic on healthcare service utilization has been reported in several countries. In Gabon, data on the preparedness for future pandemic are lacking. The aim of the present study was to assess the trends of hospital attendance, malaria and self-medication prevalences as well as ITN use before and during Covid-19 first epidemic waves in a paediatric wards of a sentinel site for malaria surveillance, in Libreville, Gabon.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States.
There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.
View Article and Find Full Text PDFMolecules
January 2025
Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including (50% ethanol and 100% methanol extract), , (hot water and 50% ethanol extract), , and . Among these, was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds.
View Article and Find Full Text PDFMolecules
January 2025
School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
Malaria, caused by species and transmitted by mosquitoes, continues to pose a significant global health threat. Pipecolisporin, a cyclic hexapeptide isolated from , has emerged as a promising antimalarial candidate due to its potent biological activity and stability. This study explores the synthesis, antimalarial activity, and computational studies of pipecolisporin, aiming to better understand its therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!