A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Brain region-specific glutathione redox imbalance in autism. | LitMetric

Autism is a heterogeneous, behaviorally defined neurodevelopmental disorder. Recently, we reported a brain region-specific increase in lipid peroxidation, and deficits in mitochondrial electron transport chain complexes in autism, suggesting the role of oxidative stress and mitochondrial dysfunction in the pathophysiology of autism. However, the antioxidant status of the brain is not known in autism. Glutathione is a major endogenous antioxidant that plays a crucial role in protecting cells from exogenous and endogenous toxins, particularly in the central nervous system. The present study examines the concentrations of glutathione (GSH, reduced form; and GSSG, oxidized form) and the redox ratio of GSH to GSSG (marker of oxidative stress) in different regions of brains from autistic subjects and age-matched control subjects. In the cerebellum and temporal cortex from subjects with autism, GSH levels were significantly decreased by 34.2 and 44.6 %, with a concomitant increase in the levels of GSSG by 38.2 and 45.5 %, respectively, as compared to the control group. There was also a significant decrease in the levels of total GSH (tGSH) by 32.9 % in the cerebellum, and by 43.1 % in the temporal cortex of subjects with autism. In contrast, there was no significant change in GSH, GSSG and tGSH levels in the frontal, parietal and occipital cortices in autism versus control group. The redox ratio of GSH to GSSG was also significantly decreased by 52.8 % in the cerebellum and by 60.8 % in the temporal cortex of subjects with autism, suggesting glutathione redox imbalance in the brain of individuals with autism. These findings indicate that autism is associated with deficits in glutathione antioxidant defense in selective regions of the brain. We suggest that disturbances in brain glutathione homeostasis may contribute to oxidative stress, immune dysfunction and apoptosis, particularly in the cerebellum and temporal lobe, and may lead to neurodevelopmental abnormalities in autism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-012-0775-4DOI Listing

Publication Analysis

Top Keywords

autism
12
oxidative stress
12
gsh gssg
12
temporal cortex
12
cortex subjects
12
subjects autism
12
brain region-specific
8
glutathione redox
8
redox imbalance
8
autism suggesting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!