Detection of virulence-associated genes in Staphylococcus aureus isolated from bovine clinical mastitis milk samples in Guangxi.

Trop Anim Health Prod

Guangxi Key Laboratory of Buffalo Genetics and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Peoples Republic of China.

Published: December 2012

Staphylococcus aureus is recognized worldwide as a pathogen causing many serious diseases in humans and animals and is one of the most common etiological agents of clinical and subclinical bovine mastitis. The purpose of this study was to determine the presence of genes encoding clfA, fnbA, fnbB, cap5, cap8, hla, hlb, nuc, sea, and tst of S. aureus strains (n = 39) isolated from bovine clinical mastitis in Guangxi by polymerase chain reaction amplification. The results of the present study indicated that all isolates were found to contain one or more virulence-associated genes. The most frequently encountered genes were fnbA (97 %) and nuc (90 %), followed by hla (85 %) and hlb (82 %), respectively. None of the investigated S. aureus strains harbored fnbB and sea genes. The data in the present study showed a relatively wide distribution of the genes fnbA and nuc among the investigated isolates, indicating that they play an important role on bovine mastitis pathogenesis. The study provides a valuable insight into the virulence-associated genes of this important pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-012-0143-zDOI Listing

Publication Analysis

Top Keywords

virulence-associated genes
12
staphylococcus aureus
8
isolated bovine
8
bovine clinical
8
clinical mastitis
8
bovine mastitis
8
hla hlb
8
aureus strains
8
genes fnba
8
fnba nuc
8

Similar Publications

Non-carbapenem-producing carbapenem-resistant Pseudomonas aeruginosa in children: Risk factors, molecular epidemiology, and resistance mechanism.

J Infect Public Health

December 2024

Department of Nosocomial Infection Control, The Clinical Laboratory, Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Background: The investigation into risk factors, molecular epidemiology, and resistance mechanisms of carbapenem-resistant Pseudomonas aeruginosa (CRPA) in pediatric populations in China is currently inadequate.

Methods: To assess epidemiology, molecular characteristics, and resistance mechanisms, virulence-associated genes were analyzed, alongside multi locus sequence typing (MLST), PCR, and qRT-PCR.

Finding: Multivariate analysis identified prolonged hospitalization (OR: 1.

View Article and Find Full Text PDF

is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.

View Article and Find Full Text PDF

Streptococcus suis (S. suis) is a major pathogen for pigs, causing large economic losses to the swine industry. Moreover, this bacterium has a zoonotic potential, being capable of infecting humans in close contact with pigs or, less frequently, through contact with pork products.

View Article and Find Full Text PDF

Double Deletion of EP402R and EP153R in the Attenuated Lv17/WB/Rie1 African Swine Fever Virus (ASFV) Enhances Safety, Provides DIVA Compatibility, and Confers Complete Protection Against a Genotype II Virulent Strain.

Vaccines (Basel)

December 2024

European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain.

African swine fever virus (ASFV) is a devastating disease affecting domestic and wild suids and causing significant economic losses in the global pig industry. Attenuated modified live virus (MLV) vaccines are the most promising approaches for vaccine development. This study aimed to evaluate the safety and efficacy of four recombinant ASFV genotype II strains, derived from the non-hemadsorbing (non-HAD) attenuated isolate Lv17/WB/Rie1, through the single or simultaneous deletion of virulence-associated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!