Half of the human genome is composed of repeated DNA, and some types are mobile within our genome (transposons and retrotransposons). Despite their abundance, only a small fraction of them are currently active in our genome (Long Interspersed Element-1 (LINE-1), Alu, and SVA elements). LINE-1 or L1 elements are a family of active non-LTR retrotransposons, the ongoing mobilization of which still impacts our genome. As selfish DNA elements, L1 activity is more prominent in early human development, where new insertions would be transmitted to the progeny. Here, we describe the conventional methods aimed to determine the expression level of LINE-1 elements in pluripotent human cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-794-1_7 | DOI Listing |
Genes Dev
January 2025
Institute for Research on Cancer and Aging of Nice (IRCAN), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University Cote d'Azur, Nice 06107, France
Long interspersed element-1 (LINE-1) retrotransposons are abundant transposable elements in mammals and significantly influence chromosome structure, chromatin organization, and 3D genome architecture. In this issue of , Ataei et al. (doi:10.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam.
The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Laboratory of Medical Genetics and Human Reproduction, School of Health Sciences, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece.
Retrotransposable elements are implicated in genome rearrangements and gene expression alterations that result in various human disorders. In the current study, we sought to investigate the potential effects of long interspersed elements-1 (LINE-1) overexpression on the integrity and methylation of DNA and on the expression of three major pluripotency factors (OCT4, SOX2, NANOG) during the preimplantation stages of human embryo development. Human MI oocytes were matured in vitro to MII and transfected through intracytoplasmic sperm injection (ICSI) either with an EGFP vector carrying a cloned active human LINE-1 retroelement or with the same EGFP vector without insert as control.
View Article and Find Full Text PDFJ Virol
December 2024
Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China.
The Vpx protein encoded by HIV-2/simian immunodeficiency virus (SIV) can antagonize the restriction of the host intrinsic restriction factor, SAMHD1, in nondividing cells by promoting its polyubiquitination and subsequent degradation, thereby facilitating viral replication and immune evasion. However, the role of deubiquitinating enzymes (DUBs) in the dynamics of virus and host remains poorly understood. Here, we demonstrate that DUB USP37 significantly reverses the Vpx-mediated degradation of SAMHD1 in various HIV-2/SIV subtypes by interacting with SAMHD1 and removing its ubiquitin chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!