Structural investigation of the species present during protein fibrillation is of tremendous importance, yet complicated by the equilibrium between species of very different sizes and life-times. Small-angle X-ray scattering may be applied to solve this problem, providing both information about the process (number of species present and volume fractions of individual species) and low-resolution three-dimensional shape reconstructions of individual species. Here, we describe in detail the challenges associated with the approach, exemplified using data from fibrillating insulin or α-synuclein samples.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-551-0_10DOI Listing

Publication Analysis

Top Keywords

small-angle x-ray
8
x-ray scattering
8
individual species
8
species
5
structural characterization
4
characterization prefibrillar
4
prefibrillar intermediates
4
intermediates amyloid
4
amyloid fibrils
4
fibrils small-angle
4

Similar Publications

It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Maintaining hexagonal structures through interfacial positioning of crosslinkers for nanofiltration.

J Colloid Interface Sci

December 2024

Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:

Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.

Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.

View Article and Find Full Text PDF

Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure.

View Article and Find Full Text PDF

Natural single-chain nanoparticles (SCNPs) such as proteins have inspired research into the formation and application of synthetic SCNPs. Although the latter can mimic general aspects of the self-assembly behavior of their biological counterparts, these systems remain relatively understudied. In this respect, a systematic series of amphiphilic statistical copolymers (ASC) of different molecular weights, with a hydrophilic comonomer (methacrylic acid) and varying hydrophobic comonomer to encompass methacrylates of different hydrophobicity, are synthesized.

View Article and Find Full Text PDF

Staphylococcus aureus is a major cause of infections like bacteremia, pneumonia, and endocarditis. These infections are often linked to the ability of S. aureus to form biofilms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!