Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper we present a model for erythropoiesis under the basic assumption that sufficient iron availability is guaranteed. An extension of the model including a sub-model for the iron dynamics in the body is topic of present research efforts. The model gives excellent results for a number of important situations: recovery of the red blood cell mass after blood donation, adaptation of the number of red blood cells to changes in the altitude of residence and, most important, the reaction of the body to different administration regimens of erythropoiesis stimulating agents, as for instance in the case of pre-surgical administration of Epoetin-α. The simulation results concerning the last item show that choosing an appropriate administration regimen can reduce the total amount of the administered drug considerably. The core of the model consists of structured population equations for the different cell populations which are considered. A key feature of the model is the incorporation of neocytolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-012-0530-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!