Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains--an improved strategy for selecting biocontrol agents.

Appl Microbiol Biotechnol

Department of Plant Pathology, College of Plant Protection, Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.

Published: February 2013

Bacterial wilt caused by Ralstonia solanacearum is a serious threat for agricultural production in China. Eight soil bacterial isolates with activity against R. solanacearum TM15 (biovar 3) were tested in this study for their in vitro activity towards ten genetically diverse R. solanacearum isolates from China. The results indicated that each antagonist showed remarkable differences in its ability to in vitro antagonize the ten different R. solanacearum strains. Strain XY21 (based on 16S rRNA gene sequencing affiliated to Serratia) was selected for further studies based on its in vitro antagonistic activity and its excellent rhizocompetence on tomato plants. Under greenhouse conditions XY21 mediated biocontrol of tomato wilt caused by seven different R. solanacearum strains ranged from 19 to 70 %. The establishment of XY21 and its effects on the bacterial community in the tomato rhizosphere were monitored by denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR-amplified from total community DNA. A positive correlation of the in vitro antagonistic activities of XY21 and the actual biocontrol efficacies towards seven genetically different R. solanacearum strains was found and further confirmed by the efficacy of XY21 in controlling bacterial wilt under field conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-012-4021-4DOI Listing

Publication Analysis

Top Keywords

solanacearum strains
12
antagonistic activity
8
genetically diverse
8
ralstonia solanacearum
8
bacterial wilt
8
wilt caused
8
16s rrna
8
rrna gene
8
vitro antagonistic
8
solanacearum
7

Similar Publications

CprA is a short-chain dehydrogenase/reductase (SDR) that contributes to resistance against colistin and antimicrobial peptides. The cprA gene is conserved across Pseudomonas aeruginosa clades and its expression is directly regulated by the two-component system PmrAB. We have shown that cprA expression leads to the production of outer membrane vesicles (OMVs) that block autophagic flux and have a greater capacity to activate the non-canonical inflammasome pathway.

View Article and Find Full Text PDF

First Report of Bacterial Wilt of Ginger Caused by in the Continental United States.

Plant Dis

January 2025

University of Minnesota Twin Cities, Department of Plant Pathology, 1991 Upper Buford circle, 495 Borlaug Hall, Saint Paul, Minnesota, United States, 55108;

Ginger (Zingiber officinale) is an herbaceous perennial in the Zingiberaceae family grown primarily in tropical to subtropical biomes as a culinary spice, a traditional medicine, and a landscaping plant. While ginger grows at soil temperatures above 20°C, several farmers in the upper Midwestern US farmers grows short-season ginger in high tunnels. In 2023 and 2024, growers in southeastern Minnesota reported a new disease of ginger.

View Article and Find Full Text PDF

Synthetic peptides bioactive against phytopathogens have lower impact on some beneficial bacteria: An assessment of peptides biosafety in agriculture.

J Environ Manage

January 2025

iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Spain; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal. Electronic address:

The emergence of bacterial resistance and the increasing restrictions on the use of agrochemicals are boosting the search for novel, sustainable antibiotics. Antimicrobial peptides (AMPs) arise as a new generation of antibiotics due to their effectiveness at low doses and biocompatibility. We compared the antimicrobial activity of four promising AMPs (CA-M, BP100, RW-BP100, and 3.

View Article and Find Full Text PDF

Three Novel Quinoline Alkaloids From Tetradium glabrifolium and Their Antibacterial Activities.

Chem Biodivers

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.

Three novel quinoline alkaloids, tetradiunitiside A (1), tetradiunitiside B (2), and glycohaplopine-6-O-α-l-rhamnopyranoside (3), along with eight known ones (4-11), were isolated from the fruits of Tetradium glabrifolium. Their structures were inferred by IR, 1D NMR and 2D NMR, and HR-ESI-MS spectra. All the isolated compounds were evaluated for their antibacterial activities.

View Article and Find Full Text PDF
Article Synopsis
  • Diseases affecting the vascular system in plants can lead to significant economic losses due to rapid destruction of crops, making quick identification of pathogens crucial for effective management.
  • The study utilized culture-independent long-read metagenomic sequencing on DNA from tomato plants displaying wilt symptoms to successfully identify pathogenic strains and predict their virulence and resistance traits.
  • The research underscores the potential for metagenomic sequencing to become a standard diagnostic tool in plant disease clinics, as the entire analysis can be completed in just two days.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!