Surface plasmon resonance (SPR) biosensing has matured into a valuable analytical technique for measurements related to biomolecules, environmental contaminants, and the food industry. Contemporary SPR instruments are mainly suitable for laboratory-based measurements. However, several point-of-measurement applications would benefit from simple, small, portable and inexpensive sensors to assess the health condition of a patient, potential environmental contamination, or food safety issues. This Trend article explores nanostructured substrates for improving the sensitivity of classical SPR instruments and nanoparticle (NP)-based colorimetric substrates that may provide a solution to the development of point-of-measurement SPR techniques. Novel nanomaterials and methodology capable of enhancing the sensitivity of classical SPR sensors are destined to improve the limits of detection of miniature SPR instruments to the level required for most applications. In a different approach, paper or substrate-based SPR assays based on NPs, are a highly promising topic of research that may facilitate the widespread use of a novel class of miniature and portable SPR instruments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-012-5963-1 | DOI Listing |
Biosensors (Basel)
December 2024
Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Surface plasmon resonance (SPR) biosensors have experienced rapid development in recent years and have been widely applied in various fields. Angular-interrogation SPR biosensors play an important role in the field of biological detection due to their advantages of reliable results and high stability. However, angular-interrogation SPR biosensors also suffer from low detection sensitivity, poor real-time performance, and limited dynamic detection range, which seriously restricts their application and promotion.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02822 Warsaw, Poland.
Microvolume ELISA platforms have become vital in diagnostics for their high-throughput capabilities and minimal sample requirements. High-quality substrates with advanced surface properties are essential for these applications. They enable both efficient biomolecule immobilization and antifouling properties, which are critical for assay sensitivity and specificity.
View Article and Find Full Text PDFPain Physician
November 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA.
Background: Peripheral nerve stimulation (PNS) has been used for over 50 years to treat chronic pain by delivering electrical pulses through small electrodes placed near targeted peripheral nerves those outside the brain and spinal cord. Early PNS systems often required invasive neurosurgical procedures. However, since 2015, the Food and Drug Administration (FDA) approved percutaneously implanted PNS leads and neurostimulators offering a much less invasive, non-opioid option for managing recalcitrant chronic pain.
View Article and Find Full Text PDFSLAS Discov
December 2024
Cytiva, 100 Results Way, Marlborough, MA, USA.
The number of peer-reviewed publications that feature biosensor data increases every year. A search of PubMed using common technique terminology, including bio-layer interferometry (BLI), surface plasmon resonance (SPR) and grating-coupled interferometry (GCI) generated more than 2500 scientific papers from 2022. Compared to 2009, when David Myszka and Rebecca Rich presented their most recent review of biosensor literature (Rich and Myszka, 2011), this number has nearly doubled.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA. Electronic address:
This review has explored optical sensors and their important role in non-invasive transdermal biomarker detection. While electrochemical sensors have been thoroughly studied for biomarker tracking, optical sensors present a compelling alternative due to their high sensitivity and selectivity, multiplex capabilities, cost-efficiency, and small form factor. This review examines the latest advancements in optical sensing technologies for transdermal biomarker detection, such as colorimetry, fluorescence, surface plasmon resonance (SPR), fiber optics, photonic crystals, and Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!