CuproCleav-1, a first generation photocage for Cu+.

Chem Commun (Camb)

University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA.

Published: May 2012

By utilizing thioether ligands, CuproCleav-1 stabilizes Cu(+) complexes in aqueous solution and releases the guest metal ion upon photolysis of the nitrobenzyl group. The photocage has an apparent K(d) of 54 pM for Cu(+), and metal ion release has been demonstrated using the fluorescent sensor CS1.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc31281fDOI Listing

Publication Analysis

Top Keywords

metal ion
8
cuprocleav-1 generation
4
generation photocage
4
photocage cu+
4
cu+ utilizing
4
utilizing thioether
4
thioether ligands
4
ligands cuprocleav-1
4
cuprocleav-1 stabilizes
4
stabilizes cu+
4

Similar Publications

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.

View Article and Find Full Text PDF

A chitosan-based sensing membrane for on-site and sensitive dual-channel portable detection and efficient adsorption of Pb in groundwater.

Anal Chim Acta

February 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:

The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.

View Article and Find Full Text PDF

Cellulose/covalent organic framework aerogel for efficient removal of Cr(VI): Performance and mechanism study.

Int J Biol Macromol

January 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:

Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!