Objective: To evaluate the influence of light on bleaching efficacy and tooth sensitivity during in-office vital bleaching.

Data Sources: We performed a literature search using Medline, EMBASE and Cochrane Central up to September 2011.

Study Selection: All randomised controlled trials (RCTs) or quasi-RCTs comparing the light-activated bleaching system with non-activation bleaching system were included. Reports without clinical data concerning bleaching efficacy or tooth sensitivity were excluded.

Results: Eleven studies were included in the meta-analysis. A light-activated system produced better immediate bleaching effects than a non-light system when lower concentrations of hydrogen peroxide (15-20% HP) were used (mean difference [MD], -1.78; 95% confidence interval [CI]: [-2.30, -1.26]; P<0.00001). When high concentrations of HP (25-35%) were employed, there was no difference in the immediate bleaching effect (MD, -0.39; 95% CI: [-1.15, 0.37]; P=0.32) or short-term bleaching effect (MD, 0.25; 95% CI: [-0.47, 0.96]; P=0.50) between the light-activated system and the non-light system. However, the light-activated system produced a higher percentage of tooth sensitivity (odds ratio [OR], 3.53; 95% CI: [1.37, 9.10]; P=0.009) than the non-light system during in-office bleaching.

Conclusions: Light increases the risk of tooth sensitivity during in-office bleaching, and light may not improve the bleaching effect when high concentrations of HP (25-35%) are employed. Therefore, dentists should use the light-activated system with great caution or avoid its use altogether. Further rigorous studies are, however, needed to explore the advantages of this light-activated system when lower concentrations of HP (15-20%) are used.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2012.04.010DOI Listing

Publication Analysis

Top Keywords

tooth sensitivity
12
light bleaching
8
sensitivity in-office
8
in-office vital
8
bleaching efficacy
8
efficacy tooth
8
bleaching system
8
bleaching
7
effects light
4
bleaching tooth
4

Similar Publications

Dental caries is a common disease resulting from tooth demineralization caused by bacterial plaque. Probiotics have shown great potential against caries by regulating the balance of oral flora. However, obstacles such as poor colonization and lysozyme sensitivity in oral cavity hinder their further application.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effectiveness of home-use desensitizing agents over an 8-week period by comparing them using different measurement methods.

Methods: A randomized, controlled clinical trial was conducted with 180 individuals aged between 18 and 70 who clinically diagnosed dentin hypersensitivity (DH) in two or more non-adjacent teeth. Subjects who met the inclusion criteria (n = 164) were randomly allocated into five test groups-using Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), Arginine, Novamin, Propolis, and Potassium nitrate-and a control group using standard fluoride toothpaste.

View Article and Find Full Text PDF

Dentin hypersensitivity is primarily caused by the exposure of dentinal tubules due to various factors, so the key to treatment is to effectively seal these exposed tubules. However, traditional dentinal tubule sealants used in clinical practice often fail to adhere securely to the tubule surface when exposed to external stimuli, resulting in a recurrence of sensitivity. In this study, we developed a silicon micromotor that moved autonomously and loaded with silver nanoparticles and a photosensitive adhesive for dentin sensitivity therapy.

View Article and Find Full Text PDF

Background And Aims: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is difficult to distinguish from mimicking disorders, with misdiagnosis resulting in IVIG overutilization. We evaluate a clinical-electrophysiological model to facilitate CIDP versus mimic neuropathy prediction.

Methods: Using the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) 2021 CIDP guidelines we derived 26 clinical and 144 nerve conduction variables.

View Article and Find Full Text PDF

Bayesian network for predicting mandibular third molar extraction difficulty.

BMC Oral Health

January 2025

Sub-Institute of Public Safety Standardization, China National Institute of Standardization, No.4 Zhichun Road, Haidian District, Beijing, 100191, PR China.

Background: This study aimed to establish a model for predicting the difficulty of mandibular third molar extraction based on a Bayesian network to meet following requirements: (1) analyse the interaction of the primary risk factors; (2) output quantitative difficulty-evaluation results based on the patient's personal situation; and (3) identify key surgical points and propose surgical protocols to decrease complications.

Methods: Relevant articles were searched to identify risk factors. Clinical knowledge and experience were used to analyse the risk factors to establish the Bayesian network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!