High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons.

J Am Chem Soc

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.

Published: May 2012

A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi(2)Se(3) nanoribbons. Up to 60 atom % copper (Cu(7.5)Bi(2)Se(3)) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja300368xDOI Listing

Publication Analysis

Top Keywords

zero-valent copper
8
bi2se3 nanoribbons
8
high densities
8
guest species
8
host lattice
8
high-density chemical
4
chemical intercalation
4
intercalation zero-valent
4
copper bi2se3
4
nanoribbons major
4

Similar Publications

Zero-Valent Copper Catalysis Enables Regio- and Stereoselective Difunctionalization of Alkynes.

Angew Chem Int Ed Engl

January 2025

Jain University - Ramanagara Campus, Centre for Nano and Material Sciences, Jakkasandra Post Kanakapura Taluk, Ramanagara-562112, Bangalore, 562112, Bangalore, INDIA.

The development of a metallic copper-based catalyst system remains a significant challenge. Herein, we report the synthesis of highly stable, active, and reusable Cu0 catalyst for the carboboration of alkynes using carbon electrophiles and bis(pinacolato)diboron (B2pin2) as chemical feedstocks to afford di- and trisubstituted vinylboronate esters in a regio- and stereoselective manner with appreciable turnover number (TON) of up to 2535 under mild reaction conditions. This three-component coupling reaction works well with a variety of substituted electrophiles and alkynes with broad functional group tolerance.

View Article and Find Full Text PDF

Malic acid-derived polyamides, polyhydrazides, and hydrazides exhibit strong potential for a variety of biological applications. This study demonstrates the synthesis of cobalt, silver, copper, zinc, and iron particles by a facile chemical reduction approach utilizing malic acid-derived polyamides, polyhydrazides, and hydrazides as stabilizing and reducing agents. Comprehensive characterization of the particles was performed using UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX analysis.

View Article and Find Full Text PDF

The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation.

View Article and Find Full Text PDF

Photocatalytic CO reduction to produce C products remains a challenge. Herein, CuO@Cu@NiAl-LDH composites with three-dimensional ordered core-shell structures were successfully prepared, and the effects of CuO with different exposed surfaces on CO photoreduction were investigated. The synergistic effect of zero-valent Cu and Cu as intermediate electron mediators retains more photogenerated electrons and the Z-scheme heterojunction formed between CuO and NiAl-LDH leads to the enhancement of C selectivity.

View Article and Find Full Text PDF

Due to the highly reductive capacity of nano zero-valent iron (nZVI), the reduction of nitrate (NO-N) is prone to produce ammonia (NH-N) as a by-product and has low selectivity for nitrogen gas (N). Selective conversion of NO-N to harmless N by regulating reaction pathway is the key to improve the reduction and nitrogen removal performance of nZVI-based materials. In this study, metal copper (Cu) was added to nZVI to prepare Cu-nZVI/LDH bimetallic composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!