The objective of this study was to improve the dissolution rate and to enhance the stability of a poorly water-soluble and low glass-trasition temperature (T(g)) model drug, fenofibrate, in low molecular weight grades of hydroxypropylcellulose matrices produced by hot-melt extrusion (HME). Percent drug loading had a significant effect on the extrudability of the formulations. Dissolution rate of fenofibrate from melt extruded pellets was faster than that of the pure drug (p < 0.05). Incorporation of sugars within the formulation further increased the fenofibrate release rates. Differential scanning calorimetry results revealed that the crystalline drug was converted into an amorphous form during the HME process. Fenofibrate is prone to recrystallization due to its low T(g). Various polymers were evaluated as stabilizing agents among which polyvinylpyrrolidone 17PF and amino methacrylate copolymer exhibited a significant inhibitory effect on fenofibrate recrystallization in the hot-melt extrudates. Subsequently immediate-release fenofibrate tablets were successfully developed and complete drug release was achieved within 5 min. The dissolution profile was comparable to that of a currently marketed formulation. The hot-melt extruded fenofibrate tablets were stable, and exhibited an unchanged drug release profile after 3-month storage at 40°C/75% RH.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2012.679280DOI Listing

Publication Analysis

Top Keywords

fenofibrate low
8
low molecular
8
molecular weight
8
hydroxypropylcellulose matrices
8
matrices produced
8
produced hot-melt
8
hot-melt extrusion
8
dissolution rate
8
fenofibrate tablets
8
drug release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!