Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydroxyapatite (HAP), a CaP compound similar to the mineral phase present in bone, has excellent biocompatibility but little osseous inductivity. In this study, we evaluated the novel nano-Sr-HAP, in which the calcium of hydroxyapatite was substituted with strontium, which acts as a bone-forming agent. Its biocompatibility and osteoinduction were assayed using marrow mesenchymal stem cells (MSCs) and osteoblasts (OBs) in vitro. We were able to demonstrate that nano-Sr-HAP supported increased OB cell adhesion, proliferation and viability up to 4 days in culture when compared with nano-HAP. MSCs cultured with nano-Sr-HAP showed higher alkaline phosphatase (ALP) activity. More extracellular mineralized nodules were found with nano-Sr-HAP compared to nano-HAP, especially in images of ALP staining. We suggest that nano-Sr-HAP powders possess osteoconductive and osteoinductive properties and have the potential to be used in the repair of bone defects caused by osteoporotic fractures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!