Recently, much work has focused on the exfoliation of graphene through a combination of oxidation and sonication procedures, followed by reduction through chemical methods. We demonstrated that the individual graphene oxide sheets can be readily reduced by using phenolphthalin as both reducing agent and stabilizer. The obtained non-covalently functionalized chemically reduced graphene oxide (CRG) can be dispersed in organic solvents very well, such as alcohol, N,N-dimethylformamide, N,N-Dimethylacetamide, N-methyl-2-pyrrolidone, etc., which can give practical applications in large scale production of oil dispersible graphene and have a potential in polymer nanocomposites fabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5139 | DOI Listing |
Food Chem
January 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China.
Lycium barbarum polysaccharide (LBP) is a prebiotic that promotes the proliferation of beneficial bacteria, but lacks of regulatory function on harmful bacteria. In this study, chlorogenic acid (CGA) was used to achieve the functional enhancement of two LBPs (LBP-A and LBP-M). The combination of CGA resulted in changes in the solution properties of LBPs, manifested as increased pseudoplasticity, viscosity, turbidity, and decreased water mobility, absolute potential value, pH value.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:
Molecules
December 2024
IPC-Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal.
Free pectinase is commonly employed as a biocatalyst in wine clarification; however, its removal, recovery, and reuse are not feasible. To address these limitations, this study focuses on the immobilization of a commercial pectinolytic preparation (Pec) onto highly porous polymer microparticles (MPs). Seven microparticulate polyamide (PA) supports, namely PA4, PA6, PA12 (with and without magnetic properties), and the copolymeric PA612 MP, were synthesized through activated anionic ring-opening polymerization of various lactams.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322, USA; Department of Chemistry, University of Louisiana at Lafayette, 300 East St. Mary Blvd, Lafayette, LA, 70504, USA. Electronic address:
A rapid and accurate biosensor for detecting disease biomarkers at point-of-care is essential for early disease diagnosis and preventing pandemics. CRISPR-Cas12a is a promising recognition element for DNA biosensors due to its programmability, specificity, and deoxyribonuclease activity initiated in the presence of a biomarker. The current electrochemical CRISPR-Cas12a-based biosensors utilize the single-stranded DNA (ssDNA) self-assembled on an electrode surface and covalently modified with the redox indicator, usually methylene blue (MB).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!